研究生: |
潘武德河 Phan Vu, Duc Ha |
---|---|
論文名稱: |
利用Rh-Ni 雙金屬觸媒氫化合成不具備臨苯二甲酸酯之塑化劑 Synthesis of Phthalate-Free Plasticizers by Hydrogenation in Water Using RhNi Bimetallic Catalyst on Aluminated SBA-15 |
指導教授: |
談駿嵩
Tan, Chung Sung |
口試委員: |
陳郁文
Chen, Yu Wen 莊顯成 Chuang, Steven S. C. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 雙金屬觸媒 、鋁改質SBA-15單體 、Rh-Ni 、化學流體沉吸法 、鄰苯二甲酸酯氫化反應 |
外文關鍵詞: | Bimetallic catalyst, Aluminated support, Rh-Ni, chemical fluid deposition, phthalates hydrogenation in water |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為塑化劑在塑膠產品扮演重要的角色,塑膠產品的消耗量增加使塑膠工業對於塑化劑的需求跟著增加。然而傳統的塑化劑對人體的健康有危害,故需要無毒及環境友善的塑化劑。在許多塑化劑中,1,2-環己烷二甲酸酯是最佳的候選人。商業上巴斯夫和其他公司將鄰苯二甲酸酯於對應的有機溶劑及在銠(Ru)的催化下氫化得到。有機溶劑的使用產生更多危害人體健康的化學廢棄物。
在本研究中,以RhNi/Al-SBA-15作為水溶液中鄰苯二甲酸酯氫化的催化劑。選用鎳搭配釕(Rh)是為了以減少釕金屬的用量。釕在氫化具共振結構的苯環有很好的催化效果,將苯環催化成環己烯後鎳能將之繼續氫化成環己烷。另外在釕鎳雙金屬觸媒中,鎳能使釕粒子變小以增加其活性點。Al-SBA-15作為雙金屬觸媒的擔體,其中鋁能作為路易斯酸使鄰苯二甲酸酯更容易吸附在觸媒上,提高反應的產率。藉由化學流體沉積法能將釕和鎳均勻地沉積在Al-SBA-15的孔道間。選用水作為鄰苯二甲酸酯氫化的溶劑是因為其對環境友善及便宜。氫化後順反異構物的比例可以藉由反應條件改變,例如溶劑種類或溶劑中二氧化碳的比例。
The tremendous increase of plastic product consumption leads to the huge demand of plasticizers in plastic industry due to its important role in plastic production. However, due to health related problems of conventional plasticizers, there comes the requirement of non-toxic and eco-friendly plasticizers. Among of them, 1,2-cyclohexane dicarboxylate ester plasticizers are the prominent candidates. They are also commercially produced by BASF and other companies by carrying hydrogenation of corresponding phthalates with organic solvent and Ru catalyst. The using of organic solvent creates more chemical wastes that harm human health.
In this study, RhNi/Al-SBA-15 was designed as the catalyst for phthalates hydrogenation in water. Nickel was chosen as the secondary metal catalyst to reduce the amount of rhodium used in phthalates hydrogenation. Due to the excellent catalytic activity of Rh, it helps to break the conjugated bonds of benzyl rings, and reduce them to cyclohexene rings, so Ni particles can further reduce the unsaturated rings to cyclohexane rings. Moreover, the introduction of Ni as a bimetallic catalyst system helps to increase the active sites of rhodium by decreasing the metal nanoparticle size. Aluminated mesoporous silica (Al-SBA-15) was used as the support for the bimetallic catalyst system, Al loaded on SBA-15 acted as Lewis acid sites that increased the adsorption potential of phthalates on support and therefore produced high reaction yield. The bimetallic catalysts on aluminated mesoporous silica were prepared by chemical fluid deposition (CFD) method to create uniform particles in the support channels. Also, water was selected as the solvent for this phthalates hydrogenation due to its eco-friendly, cheap and abundant characteristics. The cis-, trans- isomer ratio of hydrogenated products can be controlled by the reaction operation variables such as solvent types or solvent containing CO2.
1. D, B.M., Plasticizer Update, in SPI 20th Vinyl Compounding Conference. July 19-21, 2009.
2. Malveda, M.P., Chemical Economics Handbook Report on Plasticizers. July 2015.
3. Plasticizers market predicted to exceed US$19 billion by 2019. Additives for Polymers, 2015. 2015(2): p. 10-11.
4. Halden, R.U., Plastics and health risks. Annu Rev Public Health, 2010. 31: p. 179-94.
5. Klimova, T., Reyes, Javier, Gutiérrez, Oliver, Lizama, Lilia, Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: Effect of support Si/Al ratio. Applied Catalysis A: General, 2008. 335(2): p. 159-171.
6. Chuansheng Bai, J.W.B., Adrienne J. Thornburg, Natalie A. FASSBENDER, A hydrogenation catalyst, its method of preparation and use E.C.P. Inc., Editor. 2015.
7. Michael Grass, A.K., Wilfried Büschken, Axel Tuchlenski, Dietrich Maschmeyer, Kurt-Alfred Gaudschun, Frank Brocksien, Catalyst and method for hydrogenating aromatic compounds. 2003, Oxeno Olefinchemie Gmbh: Germany.
8. Song, W., Liu, Yuanshuai, Baráth, Eszter, Zhao, Chen, Lercher, Johannes A., Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chem., 2015. 17(2): p. 1204-1218.
9. Kattas L N, G.F., The Individual Additives - Dynamics of Change. 2000, Retec.
10. Wypych, G., Handbook of Plasticizers (Second Edition). 2012, Toronto: ChemTech Publishing.
11. Tickner JA, S.T., Guidotti T, McCally M, Rossi M., Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med, 2001 Jan. 39(1): p. 100-111.
12. (ATSDR), A.f.T.S.a.D.R., Toxicological profile for Di(2-ethylhexyl)phthalate (DEHP). 1993. TP92/05, April.
13. Deepak K. Agarwal, S.E., James C. Lamb, IV, Jerry R. Reel, William M. Kluwe, Effects of Di(2-Ethylhexyl) Phthalate on the Gonadal Pathophysiology, Sperm Morphology, and Reproductive Performance of Male Rats. Environmental Health Perspectives, 1986. 65: p. 343-350.
14. Autian, J., Toxicity and health threats of phthalate esters: review of the literature. Environmental Health Perspectives, 1973.
15. F.A Arcadi, C.C., C Imperatore, A Marchese, A Rapisarda, M Salemi, G.R Trimarchi, G Costa, Oral Toxicity of Bis(2-Ethylhexyl) Phthalate During Pregnancy and Suckling in the Long–Evans Rat. Food and Chemical Toxicology, 1998. 36(11): p. 963-970.
16. Korfali, S.I., Sabra, R., Jurdi, M., Taleb, R. I., Assessment of toxic metals and phthalates in children's toys and clays. Arch Environ Contam Toxicol, 2013. 65(3): p. 368-81.
17. Sarath Josh, M.K., Pradeep, S., Vijayalekshmy Amma, K. S., Sudha Devi, R., Balachandran, S., Sreejith, M. N., Benjamin, S., Human ketosteroid receptors interact with hazardous phthalate plasticizers and their metabolites: an in silico study. J Appl Toxicol, 2016. 36(6): p. 836-43.
18. Hatch, E.E., Nelson, J. W., Stahlhut, R. W., Webster, T. F., Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl, 2010. 33(2): p. 324-32.
19. Kim, S.H. and M.J. Park, Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab, 2014. 19(2): p. 69-75.
20. Schutze, A., Kolossa-Gehring, M., Apel, P., Bruning, T., Koch, H. M., Entering markets and bodies: increasing levels of the novel plasticizer Hexamoll(R) DINCH(R) in 24 h urine samples from the German Environmental Specimen Bank. Int J Hyg Environ Health, 2014. 217(2-3): p. 421-6.
21. Biedermann-Brem, S., Biedermann, Maurus, Pfenninger, Susanne, Bauer, Martina, Altkofer, Werner, Rieger, Karl, Hauri, Urs, Droz, Christian, Grob, Koni, Plasticizers in PVC Toys and Childcare Products: What Succeeds the Phthalates? Market Survey 2007. Chromatographia, 2008. 68(3-4): p. 227-234.
22. Silva, M.J., Jia, T., Samandar, E., Preau, J. L., Jr., Calafat, A. M., Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in U.S. adults (2000-2012). Environ Res, 2013. 126: p. 159-63.
23. BASF doubles capacity for Hexamoll DINCH in Germany. Additives for Polymers, 2014. 2014(7): p. 7.
24. EFSA, Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request related to a 12th list of substances for food contact materials. The EFSA Journal, 2006: p. 395-401.
25. Fankhauser-Noti, A., S. Biedermann-Brem, and K. Grob, PVC plasticizers/additives migrating from the gaskets of metal closures into oily food: Swiss market survey June 2005. European Food Research and Technology, 2006. 223(4): p. 447-453.
26. Thomas Ruhl, B.B., Jochem Henkelmann, Wolfgang Reif, Helmuth Menig, Sabine Weiguny, Process for reacting an organic compound in the presence of a supported ruthenium catalyst 1999, Basf Aktiengesellschaft: United States of America.
27. Arnd Boettcher, D.V., Jan-Dirk Arndt, Jochem Henkelmann, Hydrogenation of organic compounds e.g. aromatic amines or phenols, by using hydrogen in presence of catalyst comprising ruthenium on amorphous silicon dioxide based carrier. 2001, Basf Ag: Germany.
28. 沈俭一, 薛., 赵杰,傅玉川, 一种担载镍催化剂及其制法和用途 2013, 南京大学: China.
29. 于海斌, 费., 孙国方,臧甲忠,李孝国,高鹏,赵甲,刘有鹏,郑修新,隋芝宇, 一种邻苯二甲酸酯加氢催化剂的制备方法. 2015, 中国海洋石油总公司,中海油天津化工研究设计院,中海油能源发展股份有限公司: China.
30. Li, J.S., Guofang; Zhao, Jia, Preparation of the catalyst for dioctyl phthalate hydrogenation. Gongye Cuihua 2014. 22(9): p. 698-700.
31. Zhao, J., et al., Hydrogenation of dioctyl phthalate over supported Ni catalysts. Catalysis Communications, 2011. 16(1): p. 30-34.
32. 于东和, 焦., 车平生, 张春峰, 冯伟, 六氢化邻苯二甲酸二异丁酯的制备工艺. 2015: China.
33. Bruce L. Gustafson, B.A.T., Yeong-Jen Kuo, Timothy W. Price, Low pressure process for the hydrogenation of dimethyl benzenedicarboxylates to the corresponding dimethyl cyclohexanedicarboxlates. 1994, Eastman Kodak Company: United States of America.
34. Bruce L. Gustafson, Y.-J.K., Brent A. Tennant, Preparation of dimethyl cyclohexanedicarboxylates 1994, Eastman Kodak Company: United States of America.
35. Logan, F.W., Process for preparing dimethyl 1, 4-cyclohexanedicarboxylate. 1962, Du Pont: United States of America.
36. Morris Freifelder, D.A.D., Evelyn J. Baker, Low-Pressure Hydrogenation of Some Benzenepolycarboxylic Acids with Rhodium Catalyst. J. Org. Chem., 1966. 31(10): p. 3438-3439.
37. Charles Edwan Sumner, J., Bruce LeRoy Gustafson, Hydrogenation of phthalic acids to cyclohexanedicarboxylic acid 2001, Eastman Chemical Company: United States of America.
38. Hiroshi Machida, K.K., Fumiya Zaima, Process for producing a hydrogenation product of an aromatic carboxylic acid 2003, Mitsubishi Gas Chemical Company, Inc.: United States of America.
39. Lillwitz, L.D., Preparation of cyclohexane dicarboxylic acids 1988, Amoco Corporation: United States of America.
40. Yoshiaki Tateno, C.S., Kotone Tanaka, Mitsuo Magara, Naoki Okamoto, Kazuaki Kato, Process for preparing 1,4-cyclohexandicarboxylic acid 1995, Towa Chemical Industry Co., Ltd.: United States of America.
41. Sun, T., The design of new substrates and ligands for rhodium catalyzed asymmetric hydrogenation, in Graduated School-New Brunswick Rutgers. 2013, The State University of New Jersey: New Brunswick, New Jersey. p. 117.
42. E. M. Zakharyan, G.M., A. L. Maksimov, E. A. Karakhanov, and Z. D. Voronina, Phenol and Dihydroxybenzene Hydrogenation Catalysts Based on Polyamide Dendrimers and Rhodium Species. Petroleum Chemistry, 2014. 54(6): p. 412-419.
43. Lars Peter Lindfors, T.S., Kinetics of Toluene Hydrogenation on a Supported Ni Catalyst. Ind. Eng. Chem. Res., 1993. 32: p. 34-42.
44. Xia, B., Liu, Chang, Wu, Han, Luo, Wei, Cheng, Gongzhen, Hydrolytic dehydrogenation of ammonia borane catalyzed by metal-organic framework supported bimetallic RhNi nanoparticles. International Journal of Hydrogen Energy, 2015. 40(46): p. 16391-16397.
45. Duan, H., Wang, D., Kou, Y., Li, Y., Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation. Chem Commun (Camb), 2013. 49(3): p. 303-5.
46. Bozbağ, S.E. and C. Erkey, Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures. The Journal of Supercritical Fluids, 2015. 96: p. 298-312.
47. Yen, C.H., H.W. Lin, and C.-S. Tan, Hydrogenation of bisphenol A – Using a mesoporous silica based nano ruthenium catalyst Ru/MCM-41 and water as the solvent. Catalysis Today, 2011. 174(1): p. 121-126.
48. Yen, C.H., et al., Chemical fluid deposition of monometallic and bimetallic nanoparticles on ordered mesoporous silica as hydrogenation catalysts. Nanoscience and Nanotechnology, 2011. 11: p. 2465-2469.
49. Yu, W., Y.-P. Hsu, and C.-S. Tan, Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water. Applied Catalysis B: Environmental, 2016. 196: p. 185-192.
50. Stevens, R., In situ infrared study of pyridine adsorption/desorption dynamics over sulfated zirconia and Pt-promoted sulfated zirconia. Applied Catalysis A: General, 2003. 252(1): p. 57-74.
51. Stevens, R.W., S.S.C. Chuang, and B.H. Davis, Temperature-programmed desorption/decomposition with simultaneous DRIFTS analysis: adsorbed pyridine on sulfated ZrO2 and Pt-promoted sulfated ZrO2. Thermochimica Acta, 2003. 407(1-2): p. 61-71.
52. Yu, W., et al., Bifunctional Pd/Al-SBA-15 catalyzed one-step hydrogenation–esterification of furfural and acetic acid: A model reaction for catalytic upgrading of bio-oil. Catalysis Communications, 2011. 13(1): p. 35-39.
53. Yang, Y., Ochoa-Hernández, Cristina, de la Peña O'Shea, Víctor A., Pizarro, Patricia, Coronado, Juan M., Serrano, David P., Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Applied Catalysis B: Environmental, 2014. 145: p. 91-100.
54. Ruan, J., Kjellman, T., Sakamoto, Y., Alfredsson, V., Transient colloidal stability controls the particle formation of SBA-15. Langmuir, 2012. 28(31): p. 11567-74.
55. Teoh, W.H., R. Mammucari, and N.R. Foster, Solubility of organometallic complexes in supercritical carbon dioxide: A review. Journal of Organometallic Chemistry, 2013. 724: p. 102-116.
56. Escola, J.M., Aguado, J., Serrano, D. P., García, A., Peral, A., Briones, L., Calvo, R., Fernandez, E., Catalytic hydroreforming of the polyethylene thermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates. Applied Catalysis B: Environmental, 2011. 106(3-4): p. 405-415.
57. Pray, H.A., Schweickert, C.E., Minnich, B.H., Solubility of hydrogen, oxygen, nitrogen, and helium in water. Industrial and Engineering Chemistry, 1952. 44(5): p. 1146-1151.
58. Sunners, J.C. and S.A. Ausen, Catalyst impregnation Reactions of noble metal complexes with alumina. Journal of Catalysis, 1987. 52: p. 445-452.
59. Micera, G., L.S. Erre, and R. Dallocchio, Metal complex formation on the surface of amorphous aluminium hydroxide part I. Copper (II) complexes of glutamic and aspartic acids. Colloids and Surfaces, 1987. 28: p. 147-157.
60. Dawei Xu, R.G.C., Douglas J. Kiserow, George W. Roberts, Hydrogenation of Polystyrene in CO2-Expanded Solvents: Catalyst Poisoning. Ind. Eng. Chem. Res., 2005. 44: p. 6164-6170.
61. Fang-Yi Chang, K.-J.C., Hsu-Hsiang Cheng, Chung-Sung Tan, Adsorption of CO2 onto amine-grafted mesoporous silicas. Separation and Purification Technology, 2009. 70(1): p. 87-95.
62. V., I. and P. S., Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications. Vol. 3. 2006: Elsevier.
63. Derun Hua, S.C., Zheng Zhou, Xinning Lu, Jian Li, Poisoning Deactivation of Mesoporous Titanosilicate-Supported WO3 During Metathesis of Butene to Propene. Catal Surv Asia 2016. 20: p. 53-58.
64. C. van Schalkwyk, A.S., D.J. Moodley, T. Dube, J. Reynhardt, J.M. Botha, H.C.M. Vosloo, Factors that could influence the activity of a WO3/SiO2 catalyst: Part III. Applied Catalysis A: General, 2003. 255: p. 143–152.
65. Forzatti, P. and L. Lietti, Catalyst deactivation. Catalysis Today, 1999. 52: p. 165-181.