簡易檢索 / 詳目顯示

研究生: 張嘉銘
Chang, Chia-Ming
論文名稱: 編碼波以松接收器在具有多種用戶和接收器的穩定區域分析
On the Stability Regions of Coded Poisson Receivers with Multiple Classes of Users and Receivers
指導教授: 張正尚
Chang, Cheng-Shang
口試委員: 李端興
Lee, Duan-Shin
林華君
Lin, Hwa-Chun
楊谷章
Yang, Guu-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 55
中文關鍵詞: 多重接取差異化服務品質穩定性超可靠低延遲通訊
外文關鍵詞: multiple access, differentiated quality-of-service, stability, ultra-reliable low-latency communications
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於在5G 以及B5G 的網路免授權上行鏈路傳輸中提供差異化服務品質的需求,
    我們將編碼波以松接收器(CPR) 的機率分析擴展到具有多個類別用戶和接收器的環
    境。對於這樣的CPR 系統,在本文中我們證明(在某些技術條件下)有一個區域,稱
    為穩定區域。當提供給系統的負載在穩定區域內時,每個傳輸的封包都可以以100%
    的機率成功被接收。另一方面,如果提供的負載在穩定區域之外,則有非零的機率收
    不到封包。然後我們將穩定區域擴展到具有解碼錯誤的CPR 系統的穩定區域。我們還
    透過比較不同環境參數下的穩定區域,證明能夠在此類CPR 系統中提供差異化的服務
    品質。


    Motivated by the need to provide differentiated quality-of-service (QoS) in grant-free uplink transmissions in 5G networks and beyond, we extend the probabilistic analysis of coded Poisson receivers (CPR) to the setting with multiple classes of users and receivers. For such a CPR system, we prove (under certain technical conditions) that there is a region, called the stability region in this thesis. Each transmitted packet can be successfully
    received with probability 1 when the offered load to the system is within the stability region. On the other hand, if the offered load is outside the stability region, there is a nonzero probability that a packet will fail to be received. We then extend the stability region to the ϵ-stability region for CPR systems with decoding errors. We also demonstrate the capability of providing differentiated QoS in such CPR systems by comparing
    the stability regions under various parameter settings.

    Contents 1 List of Figures 4 List of Tables 5 1 Introduction 6 2 Review of the framework of Poisson receivers 13 3 Coded Poisson receivers with multiple classes of users and receivers 16 4 Stability 22 4.1 A necessary and sufficient condition for stability . . . . . . . . . . . . . . 23 4.2 Existence of the stability region . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Characterization of the stability region . . . . . . . . . . . . . . . . . . . 27 4.4 Weak stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 ϵ-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Numerical Results 35 5.1 IRSA with two classes of users and two classes of receivers . . . . . . . . 35 5.1.1 Stability region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.3 weak stability and ϵ-stability . . . . . . . . . . . . . . . . . . . . . 40 5.2 D-fold ALOHA with decoding errors . . . . . . . . . . . . . . . . . . . . 42 5.3 Rayleigh block fading channel . . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 Coded Poisson receivers with two classes of users and one class of receivers 47 6 Conclusion 49

    [1] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5g ultra-reliable and low-latency
    systems design,” in Networks and Communications (EuCNC), 2017 European Conference
    on. IEEE, 2017, pp. 1–5.
    [2] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency wireless
    communication: Tail, risk, and scale,” Proceedings of the IEEE, vol. 106, no. 10, pp.
    1834–1853, 2018.
    [3] P. Popovski, ˇC. Stefanovi´c, J. J. Nielsen, E. De Carvalho, M. Angjelichinoski, K. F.
    Trillingsgaard, and A.-S. Bana, “Wireless access in ultra-reliable low-latency communication
    (urllc),” IEEE Transactions on Communications, vol. 67, no. 8, pp.
    5783–5801, 2019.
    [4] T.-K. Le, U. Salim, and F. Kaltenberger, “An overview of physical layer design for
    ultra-reliable low-latency communications in 3gpp releases 15, 16, and 17,” IEEE
    Access, 2020.
    [5] A. Anand, G. De Veciana, and S. Shakkottai, “Joint scheduling of urllc and embb
    traffic in 5g wireless networks,” IEEE/ACM Transactions on Networking, vol. 28,
    no. 2, pp. 477–490, 2020.
    [6] E. Casini, R. De Gaudenzi, and O. D. R. Herrero, “Contention resolution diversity
    slotted aloha (crdsa): An enhanced random access schemefor satellite access packet
    networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 4, 2007.
    [7] G. Liva, “Graph-based analysis and optimization of contention resolution diversity
    slotted aloha,” IEEE Transactions on Communications, vol. 59, no. 2, pp. 477–487,
    2011.
    [8] K. R. Narayanan and H. D. Pfister, “Iterative collision resolution for slotted aloha:
    An optimal uncoordinated transmission policy,” in Turbo Codes and Iterative Information
    Processing (ISTC), 2012 7th International Symposium on. IEEE, 2012, pp.
    136–139.
    [9] E. Paolini, G. Liva, and M. Chiani, “Random access on graphs: A survey and new
    results,” in Signals, Systems and Computers (ASILOMAR), 2012 Conference Record
    of the Forty Sixth Asilomar Conference on. IEEE, 2012, pp. 1743–1747.
    [10] D. Jakoveti´c, D. Bajovi´c, D. Vukobratovi´c, and V. Crnojevi´c, “Cooperative slotted
    aloha for multi-base station systems,” IEEE Transactions on Communications,
    vol. 63, no. 4, pp. 1443–1456, 2015.
    [11] Z. Sun, Y. Xie, J. Yuan, and T. Yang, “Coded slotted aloha for erasure channels:
    Design and throughput analysis,” IEEE Transactions on Communications, vol. 65,
    no. 11, pp. 4817–4830, 2017.
    [12] ˇC. Stefanovi´c and D. Vukobratovi´c, “Coded random access,” in Network Coding and
    Subspace Designs. Springer, 2018, pp. 339–359.
    [13] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature for synchronous
    cdma systems over awgn channel,” IEEE Transactions on Signal Processing,
    vol. 56, no. 4, pp. 1616–1626, 2008.
    [14] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Personal Indoor and
    Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium
    on. IEEE, 2013, pp. 332–336.
    [15] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared access for
    internet of things,” in Vehicular Technology Conference (VTC Spring), 2016 IEEE
    83rd. IEEE, 2016, pp. 1–5.
    [16] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern division multiple
    access—a novel nonorthogonal multiple access for fifth-generation radio networks,”
    IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3185–3196, 2017.
    [17] O. Ordentlich and Y. Polyanskiy, “Low complexity schemes for the random access
    gaussian channel,” in 2017 IEEE International Symposium on Information Theory
    (ISIT). IEEE, 2017, pp. 2528–2532.
    [18] A. Vem, K. R. Narayanan, J.-F. Chamberland, and J. Cheng, “A user-independent
    successive interference cancellation based coding scheme for the unsourced random
    access gaussian channel,” IEEE Transactions on Communications, vol. 67, no. 12,
    pp. 8258–8272, 2019.
    [19] K. Andreev, E. Marshakov, and A. Frolov, “A polar code based tin-sic scheme for the
    unsourced random access in the quasi-static fading mac,” in 2020 IEEE International
    Symposium on Information Theory (ISIT). IEEE, 2020, pp. 3019–3024.
    [20] C.-H. Yu, L. Huang, C.-S. Chang, and D.-S. Lee, “Poisson receivers: a probabilistic
    framework for analyzing coded random access,” IEEE/ACM Transactions on
    Networking, vol. 29, no. 2, pp. 862–875, 2021.
    [21] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5g wireless network
    slicing for embb, urllc, and mmtc: A communication-theoretic view,” IEEE Access,
    vol. 6, pp. 55 765–55 779, 2018.
    [22] T.-K. Le, U. Salim, and F. Kaltenberger, “Enhancing urllc uplink configured-grant
    transmissions,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-
    Spring). IEEE, 2021, pp. 1–5.
    [23] ˇC. Stefanovi´c, M. Momoda, and P. Popovski, “Exploiting capture effect in frameless
    aloha for massive wireless random access,” in 2014 IEEE Wireless Communications
    and Networking Conference (WCNC). IEEE, 2014, pp. 1762–1767.
    [24] F. Clazzer, E. Paolini, I. Mambelli, and ˇC. Stefanovi´c, “Irregular repetition slotted
    aloha over the rayleigh block fading channel with capture,” in 2017 IEEE International
    Conference on Communications (ICC). IEEE, 2017, pp. 1–6.
    [25] C. Dumas, L. Sala¨un, I. Hmedoush, C. Adjih, and C. S. Chen, “Design of coded
    slotted aloha with interference cancellation errors,” hal-03266615, 2021.
    [26] N. Abramson, “The aloha system: another alternative for computer communications,”
    in Proceedings of the November 17-19, 1970, fall joint computer conference.
    ACM, 1970, pp. 281–285.
    [27] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information
    theory, vol. 8, no. 1, pp. 21–28, 1962.
    [28] M. Luby, M. Mitzenmacher, A. Shokrollah, and D. Spielman, “Analysis of low density
    codes and improved designs using irregular graphs,” in Proceedings of the thirtieth
    annual ACM symposium on Theory of computing, 1998, pp. 249–258.
    [29] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check
    codes under message-passing decoding,” IEEE Transactions on Information Theory,
    vol. 47, no. 2, pp. 599–618, 2001.
    [30] T.-H. Liu, C.-H. Yu, Y.-J. Lin, C.-S. Chang, and D.-S. Lee, “Aloha receivers: a network
    calculus approach for analyzing coded multiple access with sic,” arXiv preprint
    arXiv:2009.03145, 2020.
    [31] ˇC. Stefanovi´c, E. Paolini, and G. Liva, “Asymptotic performance of coded slotted
    aloha with multipacket reception,” IEEE Communications Letters, vol. 22, no. 1,
    pp. 105–108, 2017.
    [32] A. Glebov, N. Matveev, K. Andreev, A. Frolov, and A. Turlikov, “Achievability
    bounds for t-fold irregular repetition slotted aloha scheme in the gaussian mac,” in
    2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE,
    2019, pp. 1–6.
    [33] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of random processes
    via and-or tree evaluation,” in SODA, vol. 98, 1998, pp. 364–373.
    [34] E. Paolini, G. Liva, and M. Chiani, “Graph-based random access for the collision
    channel without feedback: Capacity bound,” in 2011 IEEE Global Telecommunications
    Conference-GLOBECOM 2011. IEEE, 2011, pp. 1–5.
    [35] A. G. i Amat and G. Liva, “Finite-length analysis of irregular repetition slotted
    aloha in the waterfall region,” IEEE Communications Letters, vol. 22, no. 5, pp.
    886–889, 2018.
    [36] F. P. Kelly, Reversibility and stochastic networks. Cambridge University Press,
    2011.
    [37] J. Walrand, “A probabilistic look at networks of quasi-reversible queues,” IEEE
    Transactions on Information Theory, vol. 29, no. 6, pp. 825–831, 1983.
    [38] F. P. Kelly, “Loss networks,” The annals of applied probability, pp. 319–378, 1991.
    [39] G. Liva, E. Paolini, M. Lentmaier, and M. Chiani, “Spatially-coupled random access
    on graphs,” in 2012 IEEE International Symposium on Information Theory
    Proceedings. IEEE, 2012, pp. 478–482.
    [40] E. Sandgren, A. G. i Amat, and F. Br¨annstr¨om, “On frame asynchronous coded
    slotted aloha: Asymptotic, finite length, and delay analysis,” IEEE Transactions on
    Communications, vol. 65, no. 2, pp. 691–704, 2016.
    [41] C.-S. Chang and H.-J. Wang, “Large deviations for large capacity loss networks
    with fixed routing and polyhedral admission sets,” Discrete Event Dynamic Systems,
    vol. 7, no. 4, pp. 391–418, 1997.

    QR CODE