簡易檢索 / 詳目顯示

研究生: 張佑麒
Chang, You-Ci.
論文名稱: 磁性材料於電磁感應加熱系統之研究與應用
The use of magnetic materials as electromagnetic induction driven heating system
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 仲維德
周柏寰
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 磁性材料感應加熱
外文關鍵詞: magnetic materials, induction heating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電熱為家庭普遍使用的加熱方式,舉凡熱水器、暖氣機及照明系統等,而其中以電阻式加熱為最常見的方法。但電阻式加熱雖方便,卻有著轉換效率較低,以及瞬間功率高及危險的問題。因此希望藉由非接觸式的感應加熱來做為新的熱量來源,藉此提升家電用品的安全性與效率,達成環境友善與節能的目標。
    本實驗藉由零點電壓切換(Zero-Voltage Switching, 簡稱ZVS)系統之高週波進行感應加熱,讓磁性材料上出現感應渦電流,產生電流熱效應後賦予金屬材料高效率並快速的升溫,再通過水流以達到對水加熱之效果的熱水器雛形,以及利用風力帶走感應加熱後的熱量,藉此達到暖房效果的暖氣機等應用。由於ZVS產生交流磁場的過程可減少硬切換損耗,因此可以延長ZVS的壽命以及增加其效率等優點。本實驗成功利用更低功率以達到電加熱器的升溫標準,驗證了感應加熱為一安全且有效率的發熱方式,可以做為下一代新的加熱方式。


    The resistive heating is a most commonly used heating method, such as central heating, water heating, drying machine and hair dryer. However, the resistive heating has a low conversion efficiency and requires a high instantaneous power, so it is costly with safety issue. Induction heating is now widely used in many aspects of engineering whereas it remains challenge for household appliances. This work, for the first time, employs eddy current driven heating with zero-voltage switching as heating elements. Selection of in-duction and geometry of ferromagnetic materials is important and is highly related to heating rate and input-power. An inductive element is then fabricated to function as water heater/or heat sources for others, such as machine dryer and central heating system.

    目錄 摘要 I ABSTRACT II 致謝 III 圖目錄 VII 表目錄 IX 第一章 前言與實驗動機 1 第二章 文獻回顧 2 2.1 熱水器 (Water Heater) 2 2.1.1熱水器種類 2 2.1.2熱水器能源來源 4 2.2 暖氣機 (Electric Heater) 5 2.2.1暖氣機種類 5 2.2.2 暖氣機加熱原理 7 2.3 感應加熱 (Induction Heating) 9 2.3.1 感應加熱的原理 10 2.3.2 影響感應加熱的因素 12 2.3.2.1 磁滯損耗(Hysteresis Loss) 12 2.3.2.2 渦流損耗 (Eddy Current Loss) 12 2.3.2.3 趨膚效應(Skin Effect) 13 2.3.2.4 鄰近效應(Proximity Effect) 15 2.3.3 高週波(High Frequency) 16 2.4零點電壓/電流切換 (Zero-Voltage/Current Switch-ing) 18 2.5磁性材料 (Magnetic Materials) 21 第三章 實驗方法 24 3.1 實驗藥品與儀器 24 3.2 實驗流程與步驟 25 3.2.1 實驗流程圖 25 3.2.2 熱水器裝置步驟 26 3.2.3 暖氣機裝置步驟 27 3.3 實驗分析儀器 28 3.3.1掃描式電子顯微鏡 28 3.3.2 X光繞射儀 29 3.3.3超導量子干涉磁量儀 30 3.3.4雷射閃光分析儀 31 3.3.5 ZVS高週波感應加熱器 33 第四章 結果與討論 34 4.1 材料分析 34 4.1.1 磁性分析 34 4.1.2 成分分析 35 4.1.3 熱傳導係數量測 37 4.2 感應加熱結果分析 39 4.2.1 金屬片感應加熱速率量測 39 4.2.2 熱水器加熱性質量測 39 4.2.3 暖氣機加熱性質量測 43 4.2.4 SEM分析 45 4.2.5 XRD分析 48 第五章 結論 50 參考文獻 51 圖目錄 圖 1. Tank system熱水器示意圖 3 圖 2. Tankless system熱水器示意圖 3 圖 3. 葉片式暖氣機 6 圖 4. 陶瓷式暖氣機 6 圖 5. 石英管暖氣機 6 圖 6. 碳/鹵素暖氣機 6 圖 7. 磁場變化造成渦電流示意圖 11 圖 8. 趨膚效應示意圖 13 圖 9. 鄰近效應示意圖 15 圖 10. 高週波加熱示意圖 16 圖 11. 硬切換損耗示意圖 18 圖 12. 傳統MOSFET降低硬切換損耗方法 19 圖 13. ZVS軟切換示意圖 20 圖 14. 是否採用ZVS/ZCS之電器效率比較 20 圖 15. 順磁性材料磁化過程 21 圖 16. 鐵磁性材料磁化過程 22 圖 17. 磁滯曲線模型 22 圖 18. 硬磁鐵與軟磁鐵磁滯曲線比較 23 圖 19. 熱水器裝置示意圖 26 圖 20. 暖氣機裝置示意圖 27 圖 21. 布拉格繞射定律解析圖 29 圖 22. 雷射閃光分析儀(Laser Flash Apparatus, LFA447)示意圖 32 圖 23. LFA447測量溫度對時間關係圖 32 圖 24. ZVS high frequency induction heating machine 33 圖 25. SQUID磁性分析結果 34 圖 26. 304 Stainless steel EDX成分分析結果 35 圖 27. 430 Stainless steel EDX成分分析結果 36 圖 28. N6 Ni EDX成分分析結果 36 圖 29. 三種金屬片感應加熱升溫曲線 39 圖 30. 430 Stainless steel 和 N6 Ni 管材升溫曲線 40 圖 31. N6 Ni 通水後水流之升溫曲線 41 圖 32. Tank system 水溫升溫曲線 42 圖 33. 暖氣機使用後室溫升溫曲線 43 圖 34. 實驗暖氣機與市售暖氣機升溫速率比較 44 圖 35. 熱水器Ni管材加熱前SEM影像 45 圖 36. 熱水器Ni管材加熱後SEM影像 46 圖 37. 暖氣機Ni金屬葉片加熱前SEM影像 46 圖 38. 暖氣機Ni金屬葉片加熱後SEM影像 47 圖 39. 熱水器Ni金屬管加熱前後XRD分析圖 48 圖 40. 暖氣機Ni金屬葉片加熱前後XRD分析圖 49 表目錄 表 1. 熱水器種類 4 表 2. 不同種類暖氣機效果比較 8 表 3. 常見加熱方式之比較 9 表 4. 各種交流電頻率範圍波型 17 表 5. 25°C下之熱傳導係數比較 38

    [1] Ruud Completes Quarter Century, Gas Age-Record, Volume 50, October 14, 1922. Retrieved April 1, 2017.p.489.
    [2] http://home.howstuffworks.com/tankless-water-heater1.htm
    [3] http://home.howstuffworks.com/water-heater.htm
    [4] 吳儼峯, “含鐵多壁奈米碳管與水泥之複合材料電熱性質研究”, 國立清華大學材料科學與工程學系碩士論文, 2018.
    [5] Rock and Zhu, Designer's Guide to Ceiling-Based Air Diffusion, ASHRAE, Inc., New York, GA, USA, 2002.
    [6] 郭啟田,市售各類電暖器特性比較https://www.bsmi.gov.tw/wSite/public/Attachment/f1296198802901.pdf
    [7] Fawwaz T. Ulaby, Eric Michielssen and Umberto Ravaioli, Fundamentals of Applied Electromagnetics, Pearson College Div, 2010, p.451-452
    [8] David. K and Cheng, Fundamentals of Engineering Electromagnetics, Pearson College Div,1992, p.278-280
    [9] M. Hecquet, P. Brochet, Lee Sang Jin and P. Delsalle, A Linear Eddy Current Braking System Defined by Finite Element Method, IEEE Trans. on Magnetics, Vol.35, No.3, May, 1999, p.1841-1842.
    [10] X.Q. Wu, Design and Analysis of Dual-Conductor Disk PM Eddy Current Adjust-able Speed Coupling, 2015,p.17-18
    [11] Frank W. Curtis, High-Frequency Induction Heating, McGraw-Hill Book Company,1950.
    [12] E.J.Davies, Conduction and Induction Heating, IET Power Engineering Series 11.
    [13] J.K.Robson, Induction Heating of Steel Strip for Heating and Coating, Inductoheat, 2004.

    [14] Elektrisola, Technical basics and calculation, Proximity-effect.
    http://www.elektrisola.com/hf-litz-wire/products/terminology-basics/technical-
    basics-and-calculation.html
    [15] S.L. Semiatin, D.E. Stutz, Induction Heating Treating of Steel, American Society for Metals, 1986.
    [16] 市川裕一,高頻電路設計,全華科技圖書股份有限公司,2002,p.3-5.
    [17] 高橋勘次郎, 高週波工業應用技術, 復漢出版社, 1983, p.9-10.
    [18] C. Henze, H. Martin, and D. Parsley, Zero-voltage switching in high frequency pow-er converters using pulse width modulation, in Proc. 3rd Annu. Appl. Power Electron. Conf. Expo., 1988, p.33-40.
    [19] J. Feng, Y. Hu, W. Chen, and C. C. Wen, ZVS analysis of asymmetrical half-bridge converter, in Proc. 32nd Annu. IEEE Power Electron. Spec. Conf., 2001, p. 243-247.
    [20] A. K. S. Bhat, Analysis and design of a modified series resonant converter, IEEE Transactions on Power Electronics., vol.8, no 4, 1993, p. 423-430.
    [21] F. S. Tsai and F. C. Lee, A complete DC characterization of a constant-frequency, clamped-mode, series resonant converter, in 1988 Proc. IEEE Power Electron. Spec. Conf., p. 987-996.
    [22] Hou, Y and Wiley-VCH, Magnetic nanomaterials fundamentals, synthesis and applications ,2017, p.523-526.
    [23] A. Rubio ,S.P. Apell , L. C. Venema , and C. Dekker, E ur.Phys.J.B17,2000,p.301.
    [24] Benelli and Cristiano, Introduction to molecular magnetism : from transition metals to lanthanides, 2015,p.385-386.
    [25] Heck, C., Magnetic Materials and Their Applications, Butterworths, London,1974.
    [26] Goldman, A., Handbook of Modern Ferromagnetic Materials, Kluwer Academic, Massachusetts,1999.
    [27] McCurrie , R. A., Ferromagnetic Materials Structure and Properties, Academic Press Inc., San Diego,1994.
    [28] NETZSCH-Geratebau Gmbh, Thermal Diffusivity-Thermal Conductivity.
    https://pec.engr.wisc.edu/Assets/Machines/LFA/LFA447_Brochure.pdf

    QR CODE