簡易檢索 / 詳目顯示

研究生: 王仁君
Wang, Jen-Chun
論文名稱: 反式有機太陽電池之原子層沉積氧化鋅電子選擇層與照光後處理效應
Atomic layer deposited zinc oxide electron-selective layer and light soaking effects in inverted organic solar cells
指導教授: 彭宗平
Perng, Tsong-Pyng
洪勝富
Horng, Sheng-Fu
口試委員: 鄭晃忠
孟心飛
陳方中
蔡豐羽
衛靖燕
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 131
中文關鍵詞: 反式有機太陽能電池原子層沉積氧化鋅電子選擇層照光效應
外文關鍵詞: Inverted organic solar cell, Atomic layer deposition, Zinc oxide, Electron selective layer, Light soaking
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    由於反式結構之有機太陽能電池相較於傳統有機太陽能電池具有較好的穩定性,因而許多研究團隊開始投入反式有機太陽電池的研究,因此本研究主軸也著重於反式結構之探討,所使用的材料為聚三己塞吩(P3HT)及苯基-碳61 丁酸甲酯(PCBM)。
    反式結構中常利用碳酸銫(Cs2CO3),氧化鈦(TiO2)及氧化鋅(ZnO)來當作電子選擇層(Electron Selective Layer)。為了提高元件壽命及降低電子選擇層的製程溫度來使其適用於軟性基板,本研究利用原子層沉積法(Atomic Layer Deposition)來製備氧化鋅做為可撓式有機太陽電池的電子選擇層,元件結構為ITO/ZnO/P3HT:PCBM/MoO3/Metal,而當沉積溫度為80℃且氧化鋅厚度為36nm時,可有效阻擋電洞擴散至陰極且增加陰極側之電子收集,使得可撓式有機太陽電池之效率可達4.18%,此為目前文獻上軟板上製作有機太陽電池之最高效率。除了上述以氧化鋅電子選擇層製作高效率反式太陽電池,我們更發現利用連續照光(Light soaking)可製作出高效率且結構簡單之有機太陽電池,經由連續照光,可大幅增加開路電壓(Voc)及填充因子(FF),照光後元件轉換效率可超過4%,從光電子能譜(XPS)中得知經過連續照光會改變吸光材料的表面組成,使其更利於反式結構之載子傳輸進而提升元件效率,由於此為一不可逆現象,因此連續照光實為一低成本之製程方式。
    關鍵字:反式有機太陽能電池、原子層沉積、氧化鋅、電子選擇層、照光效應


    摘要 I Abstract II Table of Contents IV List of Tables IX Chapter 1 Introduction 1 1.1 Solar cells: a clean renewable energy 1 1.1.1 Solar spectrum 1 1.1.2 Characteristics of solar cells 5 1.1.3 Development of solar cells 8 1.2 Organic solar cell 16 1.2.1 Brief history 16 1.2.2 Working principle 17 Chapter 2 Literature review 21 2.1 Materials for OSCs 21 2.1.1 Small molecules 21 2.1.2 Polymers 22 2.2 Device architectures 24 2.2.1 Single layer structure 24 2.2.2 Bilayer heterojunction structure 27 2.2.3 Bulk heterojunction structure 29 2.3 Inverted OPV device 31 2.3.1 Cs2CO3 based Inverted OPV device 32 2.3.2 Metal oxide based Inverted OPV device 32 2.3.3 Transition metal oxide based Inverted OPV device 36 Chapter 3 ZnO electron selective layer fabricated by atomic layer deposition 39 3.1 Introduction 39 3.2 Experimental 44 3.3 Results and Discussion 47 3.3.1 Characterization of ALD-ZnO 47 3.3.2 Effect of ZnO thickness 47 3.3.3 Effect of deposition temperature 57 3.3.4 Lifetime comparison 63 3.3.5 Device fabrication by blade coating 65 3.4 Summary 71 Chapter 4 Inverted organic solar cells without an electron selective layer 72 4.1 Introduction 72 4.2 Experimental 74 4.3 Results and Discussion 77 4.3.1 Effects of light soaking 77 4.3.2 Effect of post treatments 84 4.3.3 Investigation of light soaking effect 90 4.3.4 Light soaking on MoO3 buffer layer 98 4.3.5 Irreversibility of light soaking effects 102 4.4 Summary 105 Chapter 5 Light soaking induced inversion in bulk heterojunction device 106 5.1 Introduction 106 5.2 Experimental 107 5.3 Results and Discussion 110 5.3.1 Effects of light soaking 110 5.3.2 Origin of S-Shape 113 5.3.3 Investigation of light soaking effect 116 5.4 Summary 120 Chapter 6 Perspective 121 Chapter 7 Conclusion 123 References 125 Publication List 130

    [1] J. Nelson, The physics of solar cells, Imperial College Press, UK, 2003.
    [2] M. A. Green, Solar cells: operating principle, technology, and system applications, Prentice-Hall c1982.
    [3] H. Hoppea, N.S. Sariciftci, J. Mater. Res. 2004, 19, 7.
    [4] H. Spanggaard, F. C. Krebs, Sol. Energy Mater. & Sol. Cells 2004, 83, 125.
    [5] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, A.B. Holmes, J. Phys. 1994, 6, 1379.
    [6] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, M.T. Rispens, L. Sanchez, J.C. Hummelen, T. Fromherz, Thin Solid Films 2002, 403, 368.
    [7] A.E. Becquerel, Compt. Rend. Acad. Sci. 1839, 9, 145. (b) A.E. Becquerel, Compt. Rend. Acad. Sci. 1839, 9, 145.
    [8] W.G. Adams, R.E. Day, Proc. R. Soc. London 1876, 25, 113.
    [9] Pochettino, Acad. Lincei Rend. 1906, 15, 355.
    [10] M. Volmer, Ann. Physik 1913, 40, 775.
    [11] R. H. Bube, Photoconductivity of Solids; Wiley: New York, 1960.
    [12] S. Anthoe, Rom. Rep. Phys. 2002, 53, 427. (b) G.A. Chamberlain, Sol. Cells 1983, 8, 47.
    [13] D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 1954, 25, 676.
    [14] M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt.: Res. Appl. 2003, 11, 347.
    [15] T. Saga, NPG Asia Mater. 2010, 2, 96.
    [16] V. Avrutin , N. Izyumskaya, H. Morkoç, Superlattices & Microstructures 2011, 49, 337. [15變的]
    [17] C. R. Wronski, D. E. Carlson, Clean Electricity from Photovoltaics, Imperial College Press 2001, 199.
    [18] Y. Kuwano, T. Imai, M. Onishi, S. Nakano, T. Fukatsu, Japan. J. Appl. Phys. 1980, 19, 137.
    [19] A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, I. Balberg, J. Appl. Phys. 1991, 69, 6728.
    [20] J. Yang, A. Banerjee, S. Guha, Appl. Phys. Lett. 1997, 70, 2975.
    [21] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt., Res. Appl. 2009, 17, 85.
    [22] M. Powalla, D. Bonnet, Adv. Optoelectron. 2007.
    [23] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Prog. Photovolt., Res. Appl. 2003, 11, 225.
    [24] H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers; Ed.; John Wiley & Sons: Chichester, Vols. 1-4, 1997. (b) K. Müllen, G. Wegner, Electronic Materials: The Oligomer Approach; Eds.; Wiley-VCH: New York, 1998.
    [25] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    [26] G. Yu, K. Pakbaz, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 3422.
    [27] W. L. Ma, C. Y. Yang, X. Gong, K. H. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617 .
    [28] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
    [29] Y. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant , D. D. C. Bradley , M. Giles, I. Mcculloch, C.-S. Ha, M. Ree , Nat. Mater. 2006, 5, 197.
    [30] Y. Zhao, Z. Y. Xie, Y. Qu, Y. H. Geng, L. X. Wang, Appl. Phys. Lett. 2007, 90, 043504.
    [31] J. Moulé, K. Meerholz, Adv. Mater. 2008, 20, 240.
    [32] L. Li, G. H. Lu, X. Yang, J Mater. Chem. 2008, 18, 1984.
    [33] Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 1, 1783.
    [34] S. S. Kim, S. I. Na, J. Jo, G. Tae, D. Y. Kim, Adv. Mater. 2007, 19, 4410.
    [35] C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, J. Mater. Chem. 2009, 19, 5398.
    [36] Y. H. Chang, S. R. Tseng, C. Y. Chen, H. F. Meng, E. C. Chen, S. F. Horng, C. S. Hsu, Org. Electron. 2009, 10, 741.
    [37] C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, Adv. Mater. 2007, 19, 3973.
    [38] P. Boland, S. S. Sunkavalli, S. Chennui, K. Foe, T. Abdel-Fattah , G. Namkoong , Thin Solid Films 2010, 518 , 1728.
    [39] M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen Angew., Chem. Int. Ed. 2003, 42, 3371.
    [40] Y. He, H. Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 2010, 132, 1377.
    [41] G. Zhao, Y. He, Y. Li, Adv. Mater. 2010, 22, 4355.
    [42] Y. Liang, D. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc. 2009, 131, 7792.
    [43] Y. Liang, Y. Wu, D. Feng, S. T. Tsai, H. J. Son, G. Li, L. Yu, J. Am. Chem. Soc. 2009, 131, 56.
    [44] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135.
    [45] S. E. Shaheen, D. S. Ginley, G. E. Jabbour, MRS Bull. 2005, 30, 10.
    [46] P. Peumans, A.Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693
    [47] J. Xue, Polym. Rev. 2010, 50, 411.
    [48] Y. Zheng, J.G. Xue, Polym. Rev. 2010, 50,420.
    [49] S. R. Forrest, Chem. Rev. 1997, 97, 1793.
    [50] M. Shtein, H. F. Gossenberger, J. B. Benziger, S. R. Forrest, J. Appl. Phys. 2001, 89, 1470.
    [51] M. Shtein, P. Peumans, J. B. Benziger, S. R. Forrest, J. Appl. Phys. 2003, 93, 4005.
    [52] J. Xue, S. R. Forrest, J. Appl. Phys. 2004, 95, 1859.
    [53] S. H. Eom, Y. Zheng, N. Chopra, J. Lee, F. So, J. Xue, Appl. Phys. Lett. 2008, 93, 133.
    [54] P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
    [55] J. H. Burroughes, D. D. C. Bradley, A.R. Brown, R. N. Marks, K. Mackay, R.H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    [56] D. Braun, A.J. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
    [57] J. Shinar, Organic Light-Emitting Devices: A Survey; Springer: New York, 2004.
    [58] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 1.
    [59] C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, Organic Photovoltaics: Concepts and Realization; Springer: Berlin, 2003.
    [60] L. A. A. Pettersson, L. S. Roman, O. Inganas, J. Appl. Phys. 1999, 86, 487.
    [61] J. Rostalski, D. Meissner, Sol. Energy Mater. & Sol. Cells 2000, 63, 37.
    [62] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.
    [63] G.. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    [64] P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
    [65] P. Peumans, S. Uchida, S. R. Forrest, Nature 2003, 425, 158.
    [66] S. K. Hau, H. L. Yip, A. K. Y. Jen, Polym. Rev. 2010, 50, 474.
    [67] T. Tsuzuki, Y. Shirota, J. Rostalski, D. Meissner, Sol. Energy Mater. Sol. Cells 2000, 61, 1.
    [68] S. Uchida, J. Xue, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 84, 4218.
    [69] D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, M. Pfeiffer, Sol. Energy Mater. Sol. Cells 2003, 79, 81.
    [70] P. Sullivan, S.Heutz, S. M. Schultes, T. S. Jones, Appl. Phys. Lett. 2004, 84, 1210.
    [71] J. D.Myers, T. K. Tseng, J. Xue, Org. Electron. 2009, 10, 1182.
    [72] H. H. Liao, L. M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303.
    [73] J. Huang, G. Li, Y. Yang, Adv. Mater. 2008, 20, 415.
    [74] Y. F. Lim, S. Lee, D. J. Herman, M. T. Lloyd, J. E. Anthony, G. G. Malliaras, Appl. Phys. Lett. 2008, 93, 193301.
    [75] Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Adv. Funct. Mater. 2009, 19, 1.
    [76] L. M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1.
    [77] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Appl. Phys. Lett. 2006, 89, 233517.
    [78] S. K. Hau, H. L. Yip, K. Leong, A. K. Y. Jen, Org. Electron. 2009, 10, 719.
    [79] C Girotto, B. P Rand, S. Steudel, J. Genoe, P. Heremans, Org. Electron. 2009, 10, 735.
    [80] F. C. Krebs, Sol. Energy Mater. and Sol. Cells. 2008, 92, 715.
    [81] G Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 2006, 88, 253503.
    [82] M. S. White, D. C. Olson, S. E. Shaheen, N. opidakis, D. S. Ginley, Appl. Phys. Lett. 2006, 87, 143517.
    [83] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O’Malley, A. K. Y. Jen, Appl. Phys. Lett. 2008, 92, 253301.
    [84] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J.Brabec, Appl. Phys. Lett. 2006, 89, 233517.
    [85] R. Steim, S. A. Choulis, P. Schilinsky, C. J. Brabec, Appl. Phys. Lett. 2008, 92, 093303.
    [86] H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 243302.
    [87] C. Tao; S. P. Ruan, G. H. Xie, X. Z. Kong, L. Shen, F. X. Meng, C. X. Liu, X. D. Zhang, W. Dong, W. Y. Chen, Appl. Phys. Lett. 2009, 94, 043311.
    [88] J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, C. F. Lin, Org. Electron., 2009, 10, 1060.
    [89] K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Appl. Phys. Lett. 2008, 93, 221107.
    [90] Tao, S. P. Ruan, X. D. Zhang, G. H. Xie, L. Shen, X. Z. Kong, W. Dong, C. X. Liu, W. Y. Chen, Appl. Phys. Lett. 2008, 93, 193307.
    [91] F. C. Krebs, S. A. Gevorgyan and J. Alstrup, J. Mater. Chem. 2009, 19, 5442.
    [92] F. C. Krebs, Org. Electron. 2009, 10, 761.
    [93] R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301.
    [94] W. J. Potscavage, S. Yoo, B. Domercq and B. Kippelen, Appl. Phys. Lett. 2007, 90, 253511.
    [95] J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H. H. Johannes, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 233305.
    [96] E. Katsia, N. Huby, G. Tallarida, B. Kutrzeba-Kotowska, M. Perego, S. Ferrari, F. C. Krebs, E. Guziewicz, M. Godlewski, V. Osinniy and G. Luka, Appl. Phys. Lett. 2009, 94, 143501.
    [97] Y. X. Wang, S. R. Tseng, H. F. Meng, K. C. Lee, C. H. Liu, S. F. Horng, Appl. Phys. Lett. 2008, 93, 133501.
    [98] C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu and W. Chen, Appl. Phys. Lett. 2008, 93, 193307.
    [99] E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wojcik, S. Yatsunenko, E. Lusakowska, W. Paszkowicz, M. Guziewicz, J. Appl. Phys. 2008, 103, 033515.
    [100] B. C. Thompson, J. M. J. Fréchet, Angew. Chem., Int. Ed., 2008, 47, 58.
    [101] R. Søndergaard,M. Helgesen, M. Jørgensen, F. C. Krebs, Adv. Energy Mater. 2011, 1, 68.
    [102] J. Alstrup, M. Jørgensen, A. J. Medford, F. C. Krebs, ACS Appl. Mater. Interfaces, 2010, 2, 2819.
    [103] L. Ayzner, D. D. Wanger, C. J. Tassone, S. H. Tolbert, B. J. Schwartz, J. Phys. Chem. C, 2008, 112, 18711.
    [104] Kumar, S. Sista, Y. Yang, J. Appl. Phys. 2009, 105, 094512.
    [105] H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2010, 96, 243305.
    [106] Y. Zhou, H. Cheun, W. J. Potscavage, Jr, C. Fuentes-Hernandez, S. J. Kim, B. Kippelen, J. Mater. Chem. 2010, 20, 6189.
    [107] M. T. Lloyd, D. C. Olson, P. Lu, E. Fang, D. L. Moore, M. S. White, M. O. Reese, D. S. Ginley, J. W. P. Hsu, J. Mater. Chem. 2009, 19, 7638.
    [108] Kumar, S. Sista, Y. Yang, J. Appl. Phys. 2009, 105, 094512
    [109] J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung, P. K. L. Chan, Org. Electron. 2011, 12, 880.
    [110] Lachkar, A. Selmani, E. Sacher, M. Leclerc, R. Mokhliss, Synthetic Metal 1994, 66, 209
    [111] H. Wei, L. Scudiero, H. Eilers, Appl. Sur. Sci. 2009, 255,8593.
    [112] V. Shrotriya, J. Quyang, R. J. Tseng, G. Li, Y. Yang, Chem. Phys. Lett. 2005, 411, 138.
    [113] L. W. Chong, Y. N. Chou, Y. L. Lee, T. C. Wen, T. F. Guo, Org. Electron., 2009, 10, 1141.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE