研究生: |
許晉睿 Jin-Rei Hsu |
---|---|
論文名稱: |
微奈米尺度下接觸物體間黏滯現象之研究: 分子動力學模擬及原子力顯微鏡實驗 Study of Adhesion between Contact Bodies in the Micro-scale to Nano-scale Range: Molecular Dynamics Simulation and Experiment of Atomic Force Microscope |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 黏滯現象 、分子動力學模擬 、原子力顯微鏡 |
外文關鍵詞: | Adhesion, Molecular dynamics simulation, Atomic force microscope |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為尺寸效應(Size effect)的影響,奈米尺度下的物性將迥異於巨觀世界中的認知。本文利用分子動力學模擬(Molecular Dynamics Simulation)以及原子力顯微鏡(Atomic Force Microscope)實驗來研究介觀尺度下接觸物體間之黏滯現象及其物理行為。系統模型利用約七千顆的金(Au)原子建立成原子力顯微鏡中探針與基板的幾何形貌,並以Morse勢能來模擬分子間的作用力。探針的模型共分為五組,主要的差異在於接觸面積的改變。本研究發現,原子級的跳躍接觸(Jump-to-contact)現象在金的探針及基材之間十分明顯,接觸面積越大則此現象越早發生。另外,探針與基材分離時,因黏滯造成的原子遷移產生了頸縮(Necking)現象,並緊接著於基材表面形成島狀結構(Island structure),此奈米結構(頸縮與島狀結構)尺寸與接觸面積的大小為正相關。研究結果也顯示,由於黏滯現象的作用,探針與基板間機械式的接觸和奈米線及奈米點的形成有很大的關連性。實驗部份利用表面鍍金的矽探針與基板來進行力量曲線(Force curve)的繪製與黏滯力量的量測。由實驗結果發現,利用古典的黏滯理論所求得之黏滯力大小與實驗結果有很大的差異,此差異主要歸因於連體理論對於介觀尺寸物體的不適用、探針與基板間接觸面積大小的不確定性以及實驗環境(如水氣等)的影響。
Owing to the size effect, the physical behaviors of objects will greatly diverge from the knowledge in the macroscopic world. This study investigates the adhesion phenomenon and its physical behavior between contact bodies in the mesoscopic scale by molecular dynamics (MD) simulation and by the experiment of atomic force microscope (AFM). The system model is constructed as the tip and substrate system of the AFM, which consists of about 7000 Au atoms and utilizes the Morse potential function to simulate the intermolecular forces between atoms. Five tip models with different size of the contact area are built. The simulation results reveal that the jump-to-contact phenomenon at the atomistic level is apparent between gold tip and gold substrate. Larger contact area triggers earlier jump-to-contact between the tip and substrate. In addition, owing to the atom migrations caused by adhesion, an extended neck is gradually formed upon the retraction of the tip from contact, and an island shape structure is formed on the substrate after the neck breaking. The size of these nanostructures (neck and island) has positive correlation with the contact area. Results also show that the mechanical contact between the tip and substrate closely correlates to the formation of the nanowire and nanodot due to the adhesion phenomenon. In the experimental study, the Au-coated Si tip and substrate are utilized to plot the force curve. The adhesion force is measured by the force curve plotting. By comparing with the adhesion forces estimated from the classical adhesion theories, the experimental results exhibit a huge variance. This variance on the adhesion force is attributed to the applicability of the continuum theory for the mesoscopic bodies, the uncertainty on the size of the contact area between the tip and substrate, and some influences of the experimental environment (ex. the moisture).
1. 尹邦耀,”奈米時代”,五南圖書公司,台北市,2002。
2. 王崇人,”神奇的奈米科學”,科學發展,354期,pp. 48-51,2002。
3. T. Fukuda, F. Arai, and L. Dong, “Nano Robotic World - From Micro to Nano,” Proc. of the IEEE Int. Conf. on Robotic and Automation, plenary speech Ⅲ, 2001.
4. T. H. Fang, “Study on the Nano-scale Processing Technology Using Atomic Force Microscopy,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000.
5. G. V. Dedkov, “Review article: Experimental and theoretical aspects of the modern nanotribology,” Phys. Stat. Sol. (a), Vol. 179, pp. 3-75, 2000.
6. B. Bhushan, “Handbook of Micro/Nano Tribology,” 2nd Ed., CRC Press, Boca Raton, 1995
7. M. Sitti, “Survey of nanomanipulation systems,” Proc. of the IEEE Nanotechnology Conf., pp. 75-80, 2001.
8. M. Guthold, M. R. Falvo, W. G.. Matthews, S. Paulson, S. Washburn, D. A. Erie, R. Superfine, F. P. Brooks, and R. M. Taylor Ⅱ, “Control manipulation of molecular samples with the nanomanipulator,” IEEE/ASME Transactions on Mechatronics, Vol. 5, pp.189-198, 2000.
9. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, Vol. 287, pp. 637-640, 2000.
10. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic body,” Proc. Roy. Soc. London. A., Vol. 324, pp.301-313, 1971.
11. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci., Vol.53, pp.314-326, 1975.
12. D. Tabor, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., Vol. 58, No. 1, 1977.
13. D. Maugis, “Adhesion of spheres: The JKR-DMT transition using a Dugdale model,” J. Colloid Interface Sci., Vol. 150, pp.243-269, 1992.
14. K. L. Johnson, and J. A. Greenwood, “An adhesion map for the contact of elastic sphere,” J. Colloid Interface Sci., Vol. 150, pp.326-333, 1997.
15. J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1992.
16. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner, “Molecular dynamics simulations of atomic-scale friction of diamond surface,” Phys. Rev. B, Vol. 46, No.15, pp. 9700-9708, 1992
17. K. Maekawa and A. Itoh, “Friction and tool wear in nano-scale maching — a molecular dynamics approach,” Wear, Vol. 188, pp. 115-122, 1995
18. J. Shimizu, H. Eda, M. Yoritsune, and E. Ohmura, “Molecular dynamics simulation of friction on the atomic scale,” Nanotechnology, Vol. 9, pp. 118-123, 1998.
19. W. C. D. Cheong and L. C. Zhang, “Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentatio,” Nanotechnology, Vol. 11, pp.173-180, 2000.
20. U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture,” Science, Vol. 248, pp. 454-461, 1990.
21. U. Landman and W. D. Luedtke, “Nanomechanics and dynamics of tip-substrate interactions,” J. Vac. Sci. Technol. B, Vol. 9 (2), pp. 414-422, 1991.
22. V .V. Pokropivny, V. V. Skorokhod, and A. V. Pokropivny, “Atomic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (110) BCC-Iron surface,” Mater. Lett. , Vol. 31, pp. 49-54, 1997.
23. http://www.ntmdt.com
24. J. Israelachvili, “Intermolecular & Surface Forces,” 2nd Ed., Academic Press, San Diego, 1992.
25. D. S. Rimai, D. J. Quesnel, and A. A. Busnaina, “The adhesion of dry particles in the nanometer to micrometer-size range,” Colloids and Surfaces A, pp.3-10, 2000.
26. Q. Ouyang, K. Ishida, and K. Okada, “Investigation of micro-adhesion by atomic force microscopy,” Appl. Surf. Sci., Vol. 170, pp.644-648, 2001.
27. K. L. Johnson, “Contact Mechanics,” Cambridge University Press, London, 1985.
28. J. A. Greenwood, Proc. Roy. Soc. London A, Vol. 453, 1277, 1997.
29. F. Podczeck, “Particle-particle Adhesion in Pharmaceutical Powder Handling,” Imperial College Press, London, 1998.
30. E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog, “Nanoscience: Friction and Rheology on the Nanometer Scale,” World Scientific, 1998.
31. D. S. Rimai, L. P. Demejo, and R. C. Bowen, “Mechanics of Particle Adhesion,” Fundamentals of Adhesion and Interfaces, VSP, Netherlands, 1995.
32. F. B. Neal, “Molecular Dynamics Simulation of Adhesion and Nanoindentation of Gallium Arsenide,” Ph.D. Dissertation, Louisiana State University, USA, 2002.
33. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Oxford, 1987.
34. L. A. Girifalco and V. G. Weizer, “Application of the morse potential function to cubic metals,” Phys. Rev., Vol. 114, pp. 687-690, 1959.
35. S. P. Ju, “Investigation of Nano Thin Film Deposition Process Using Molecular Dynamics Simulation with an Implementation of Parallel Computing Technique,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2002.
36. R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Molecular dynamics simulation of atomic-scale friction,” Phys. Rev. B, Vol. 61, pp. 14007-14019, 2000.
37. T. H. Fang, C. I. Weng, and J. G. Chang, “Molecular dynamics simulation of nano-lithography process using atomic force microscopy,” Surf. Sci., Vol. 501, pp. 138-147, 2002.
38. A. M. Childs, M. H. Shapiro, and T. A. Tombrello, “Simulation of keV clusters incident on gold target,” Nucl. Instr. and Meth. in Phys. Res. B, Vol. 143, pp. 298-305, 1998.
39. S. Maruyama, “Molecular Dynamics Methods in Microscale Heat transfer,” Handbook of Heat Exchanger Update, 2002, in press.
40. N. Agraït, G. Rubio, and S. Vieira, “Plastic deformation of nanometer-scale gold connective necks,” Phys. Rev. Lett., Vol. 74(20), pp. 3995-3998, 1995.
41. D. Fujita and T. Kumakura, “Reproducible fabrication of metallic silver nanostructures on a Si(111)-(7×7) surface by tip-material transfer of a scanning tunneling microscope,” Appl. Phys. Lett., Vol. 82(14), pp.2329-2331, 2003.
42. D. Fujita, Q. Jiang, and H. Nejoh, “Fabrication of gold nanostructures on a vicinal Si(111)-7×7 surface using ultrahigh vacuum scanning microscope and a gold-coated tungsten tip,” J. Vac. Sci. Technol. B, Vol. 14(6), pp. 3413-3419, 1996.
43. T. C. Chang, C. S. Chang, H. N. Lin, and T. T. Tsong, “Creation of nanostructures on gold surfaces in nonconducting liquid,” Appl. Phys. Lett., Vol. 67(7), pp. 903-905, 1995.
44. J. I. Pascual, J. Méndez, J.Gómez-Herrero, A. M. Baró, and N. García, “Quantum contact in gold nanostructures by scanning tunneling microscopy,” Phys. Rev. Lett., Vol. 71(12), pp. 1852-1855, 1993.
45. D. Erts, A. Lõhmus, R. Lõhmus, H. Olin, A. V. Pokropivny, L. Ryen, and K. Svensson, “Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope,” Appl. Surf. Sci., Vol. 188, pp. 460-466, 2002.
46. K. Takayanagi, Y. Kondo, and H. Ohnishi, “Miniaturized STM working simultaneously in UHV electron microscope-Conductance quantization of suspended gold nanowires,” JEOL News, Vol. 34E(1), pp. 20-23, 1999.
47. G. Rubio, N. Agraït, and S. Vieira, “Atomic-sized metallic contacts: Mechanical properties and electronic transport,” Phys. Rev. Lett., Vol. 76(13), pp. 2302-2305, 1996.
48. T. N. Todorov and A. P. Sutton, “Force and conductance jumps in atomic-scale metallic contacts,” Phys. Rev. B, Vol. 54(20), pp. 14234-14237, 1996.
49. S. Blom, H. Olin, J. L. Costa-Krämer, N. García, M. Jonson, P. A. Serena, and R. I. Shekhter, “Free-electron model for mesoscopic force fluctuations in nanowires,” Phys. Rev. B, Vol. 57(15), pp. 8830-8833, 1998.