研究生: |
林士航 |
---|---|
論文名稱: |
氮化鎵薄膜之光致螢光現象研究 Study of photoluminescence in GaN thin film |
指導教授: | 齊正中 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 氮化鎵 、光致螢光光譜 、時間解析光譜 、三光子吸收致螢光 、熱活化能 、束縛激子 |
外文關鍵詞: | GaN, PL, TRPL, 3-photon absorption induced PL, activation enerny, bound exciton |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們用鈦:藍寶石鎖模雷射,波長為800nm,單一脈衝功率81.25KW經過啾頻脈衝放大(chirped-pulse amplification)後,波長為800nm,單一脈衝功率為4.62GW的雷射作為激發光,在氮化鎵半導體材料上激發出螢光來,藉此來觀察氮化鎵半導體材料其多光子吸收的現象,並由螢光的頻譜特性來了解其氮化鎵半導體的能帶結構及其非線性的效率。
我們所使用的n型GaN薄膜樣品於He-Cd雷射光(325nm)激發下,所對應出的復合發光在帶隙附近,進一步也進行10K到315K的變溫實驗;理論上對於TE和TM模的激發,氮化鎵材料內部電偶極躍遷有光場極化方向之相依性,所以應會有不同的電偶極躍遷,但是我們未觀察到此一現象,可能的原因為矽摻雜所導致能帶結構不明顯;為了比較,我們也對非刻意摻雜的GaN薄膜做同樣的量測,經相互比較後,討論GaN薄膜樣品可能的發光機制。最後以800nm的脈衝雷射來激發n-GaN薄膜樣品,所看到的光譜圖與線性激發所得到的略同,但其頻譜寬度顯然較窄;在脈衝光激發下,激發光強度對應發出螢光的強度,顯示其有著約三次方的相依關係,證明這螢光是來自於三光子吸收的非線性過程。
We excite GaN compound semiconductor by using the Ti: sapphire pulse laser as the pumping source so that we could observe the nonlinear absorption phenomenon, and hence the band structure of GaN. The wavelength of the Ti: sapphire pulse laser is 800 nm, unit peak power could be 81.25 KW. After chirped-pulse amplification, its wavelength is still 800nm, but unit peak power could reach 4.62 GW.
First we use He-Cd laser (325nm) to excite n-GaN sample with variable pump power and temperature. The photoluminescence we got correspond to the band-edge structure of GaN. The PL spectrum of GaN should has the dependence of polarization of E-filed in theory, but we couldn’t observe that phenomenon. It maybe due to Si-doped induced merge of band structure. For comparing, we also do experiment of unintentially-doped GaN, and with these data we could try to understand the mechanism of the carrier recombination in these two sample, both are dominated by donor-bound excitons. Alternatively, we use the pulse laser to excite GaN sample and thus have a PL spectrum looks like the linear excited one, but with a thinner spectrum width. Besides, using pulse-laser excitation, we could extract the power dependence (cubic) between the intensity of pumping laser and PL signal, and it shows that the photoluminescence is due to the 3-photon absorption of GaN.
[1-1] Maruska,H.P. and Tietjen,J.J. ”The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett. 15 (1969), 327.
[1-2] S. Yoshida, S. Misawa and S. Gonda, " Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates, " Appl. Phys. Lett., 42 (1983), p. 427.
[1-3] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, "Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer," Appl. Phys. Lett., 48 (1986), p. 353.
[1-4] Shuji Nakamura, "GaN Growth Using GaN Buffer Layer," Jpn. J. Appl. Phys., 30 (1991), p. L1705.
[1-5] http://www.phys.ksu.edu/area/GaNgroup
[1-6] ”TCSPC Modules Application Note”, Boston Electronics Corporation.
[1-7] 陳文宇、沈志霖,”ZnTe/ZnSe量子點的光學特性研究”,中原大學應用物理研究所碩士論文,民國九十三年六月。
[1-8] Hanju Rhee , Taiha Joo, “Noncollinear Phase Matching in Fluorescence Up-conversion,” Optics Letters, 30 (2005), p96.
[1-9] R. Nakamura, Y. Kanematsu. ”Femtosecond Spectral Snapshots Based on Electronic Optical Kerr Effect,” Review of Scientific Instruments, 75 (2004) p.636,
[1-10] The Picture is from Max Planck Institute for Quantum Optics / Vienna University of Technology.
[1-11] Alexander M. Strelsov, K. D. Moll, Alexander L. Gaeta, P. Kung, D. Walker, M. Razeghi, “Pulse Autocorrelation Measurements Based on Two- and Three-Photon Conductivity in a GaN Photodiode,” Appl. Phys. Lett. 75 (1999), 3778.
[1-12] Dosek Kim, I. H. Libon, C.Voelkmann, Y. R. Shen, V. Petrova-Koch, “Multiphoton Photoluminescence from GaN with tunable picosecond pulses,” Physical Review B, 15(1997), R4907.
第二章之參考文獻
[2-1] 傅如彬,”藍光材料光激載子動態特性之研究”,清華大學物理系碩士論文
,民國八十七年七月。
[2-2] Sakurai, Jun John, “Modern quantum mechanics,” Addison-Wesley Pub. Co.
[2-3] Bahaa E. A. Saleh , Malvin Carl Teich , “Fundamentals of Photonics,” Wiley
Intersicence Publication.
[2-4] Kittel, “Introduction to Solid State Physics,” John Wiley & Sons, Inc.
[2-5] S. Chichibu, T. Azuhata and T. Sota, S. Nakamura, “Excitonic emissions from
hexagonal GaN epitaxial layers,” J. Appl. Phys. 79 (1996), 2784.
[2-6] W. Shan, T. J. Schmidt, X. H. Yang, S. J. Hwang, and J. J. Song, B. Goldenbeg,
“Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 66 (1995), 985.
[2-7]J. Li. B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, Pierre Carriwe Su-Huai Wei, “Band structure and fundamental optical transitions in wurzite AlN,” Appl. Phys. Lett. 83 (2003), 5163.
[2-8]W. Gotz and N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, “Activation energies of Si donors in GaN,” Appl. Phys. Lett. 68 (2003), 3144.
[2-9]C. F. Klingshirn, “Semiconductor Optics,” p246~248.
[2-10]Varshni. Y. P., Physica 34 (1967), 149.
[2-11]Michael E. Levinshtein, Sergey L. Rumyantsev, Michael S. Shur, “Properties of
advanced semiconductor materials,” Wiley-Interscience publication (2001).
[2-12]G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, Su-Huai Wei, M. Asif Khan C. J. Sun, “Fundamental optical transitions in GaN,” Appl. Phys. Lett. 68 (1996), 2784.
第三章參考文獻:
[3-1]S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
第四章參考文獻:
[4-1]P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Ferguson, and M. Razeghi, “High quality AIN and GaN epilayers grown on (00.1) sapphire, (100),
and (111) silicon substrates,” Appl. Phys. Lett. 66 (1995), 2958.
[4-2]M. Godlewski, J. P. Bergman, B. Monemar, U. Rossner and A. Barski, “Time-resolved photoluminescence studies of GaN epilayers grown by gas source molecular beam epitaxy on an AlN buffer layer on (111) Si,” Appl. Phys. Lett. 69 (1996), 2089.
[4-3]A. Ohtani, K. S. Stevens, R. Beresford, “Microstructure and photoluminescence
of GaN grown on Si(lll)by plasma-assisted molecular beam epitaxy,” Appl.
Phys. Lett. 69 (1996), 2089.
[4-4]P. Boguslawski, E. Briggs, J. Bernholcm, Phys. Rev. B 51, 17255 (1995).
[4-5]J. Neugebauer, C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).
[4-6]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, J. Appl. Phys, 86(1999), 3721.
[4-7]Bernar, Gil, “Group Ⅲ Nitride Semiconductor Compounds.” p200.
[4-8]Haynes, J. R, Phys. Rev. Lett. 4(1960), 361.
[4-9]Halstedt R. E. , Aven M , Phys. Rev. Lett. 14(1965), 64.
[4-10]E. F. Schubert, I. D. Goepfert, and W. Grieshaber, J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett. 71 (1997), 921.
[4-11]Bernard, Gil, “Group Ⅲ Nitride Semiconductor Compounds.” p206,207.
[4-12]A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, R. F. Karlicek, Jr. Appl. Phys. Lett. 70 (1997), 26.
[4-13] E. F. Schubert, I. D. Goepfert, and W. Grieshaber, J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett. 71 (1997), 921.
[4-14]W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, W.imler, “Activation
energies of Si donors in GaN,” Appl. Phys. Lett. 68 (1997), 3144.
[4-15]Chao-Kuei Lee, Fu-Jen Kao, Shing Chung Wang, Ci-Ling Pan, “ Simultaneous
Observation of Second –Harmonic Emission and Three-Photon Excited
Photoluminescence from Hybrid Vapor Phase-Epitaxy-Grown GaN Film,” Jpn,
J. Appl. Phys, 40, 6805 (2001).
[4-16]Dosek Kim, I. H. Libon, C.Voelkmann, Y. R. Shen, V. Petrova-Koch, “Multi-photon Photoluminescence from GaN with tunable picosecond pulses,”
Physical Review B, 15(1997), R4907.