簡易檢索 / 詳目顯示

研究生: 劉雅娟
Liu, Ya-Chuan
論文名稱: SUMO-1以及SUMO-Interacting Motif調控金屬感應轉錄因子複合體形成之探討
SUMO Conjugation and SUMO-Interacting Motif in the Functional Assembly and Regulation of Metal- Responsive Transcription Factor 1
指導教授: 林立元
Lin, Lih-Yuan
口試委員: 楊嘉鈴
高茂傑
洪建中
李易展
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 141
中文關鍵詞: 金屬感應轉錄因子金屬硫蛋白小泛素轉譯後修飾複合體
外文關鍵詞: MTF-1, metallothionein, zinc, SUMO, post-translational modification, complex
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當細胞中鋅離子含量過高,或細胞遭受重金屬的毒性、氧化壓力、缺氧等逆境時,會透過活化金屬感應轉錄因子(MTF-1),使得MTF-1轉錄活化下游基因,例如金屬硫蛋白大量表現,幫助細胞調節鋅離子恆定,或是對抗重金屬毒性以及氧化逆境。經由Mtf-1基因剃除實驗發現MTF-1是小鼠胚胎發育過程中的必要因子。我們的研究發現MTF-1會被進行sumoylation轉譯後修飾作用,並且藉由定點突變的實驗,我們確認此SUMO共價鍵結的作用位置是發生在MTF-1蛋白C端區域的Lys627殘基上,而此SUMO結合位置Lys627在許多物種的MTF-1都是具有保留性的。我們將SUMO-1蛋白融合至MTF-1的C端區域用以模擬MTF-1被進行SUMO修飾作用,結果顯示MTF-1-SUMO融合蛋白的轉錄活性顯著地受到抑制。然而,sumoylation造成的轉錄活性抑制現象,並不是透過影響MTF-1受金屬鋅刺激後移動進入細胞核的能力,也不是改變MTF-1與下游基因結合的能力,甚至也不影響MTF-1蛋白質的穩定性。我們進一步觀察發現鋅刺激會導致MTF-1的SUMO修飾程度降低,此SUMO修飾程度下降的現象和金屬濃度以及處理時間有相關;然而這樣的現象使得sumoylation對於抑制MTF-1轉錄活性的生理意義變的薄弱,因為當鋅刺激後MTF-1會進入細胞核,並且此時sumoylation修飾作用消失。
    我們也進一步發現,在SUMO修飾作用位置的前端是一段具有功能的SUMO-interacting motif (SIM)序列。此段SIM序列並不參與調控MTF-1自身受sumoylation修飾作用;但是當SIM序列被破壞時,會導致MTF-1的轉錄活性降低,顯示此段SIM序列對於維持MTF-1轉錄活性是必要的。更值得注意的是,MTF-1透過SIM和被SUMO修飾的MTF-1分子交互結合,並且經由凝膠過濾層析實驗,我們確認MTF-1單體藉由SIM序列和其他MTF-1分子以及細胞內其他蛋白質形成複合體。而此MTF-1的交互作用是發生在細胞質,當細胞遭受金屬刺激時,MTF-1移動進入細胞核中,此時MTF-1複合體便瓦解,並且細胞核的環境使得已解開的MTF-1無法再結合成高分子量的複合體。因此我們歸納出MTF-1的sumoylation修飾作用以及SIM序列對於抑制MTF-1轉錄活性方面並不扮演關鍵性的角色;重要的是,MTF-1會藉由SIM序列和SUMO的結合而在細胞質中形成複合體。
    透過本篇的研究成果,我們首次發現MTF-1會被進行sumoylation修飾作用,並且會以複合體的形式存在於細胞質中。我們在此提出一個新的模式來說明MTF-1需要透過SIM序列與SUMO作用才得以組合成複合體,此MTF-1複合體的存在是會受金屬調控。


    Metal-responsive transcription factor 1 (MTF-1) is an essential protein required for mouse embryonic development. We report here the occurrence of sumoylation on MTF-1. Mutational studies demonstrated that sumoylation occurs on the lysine residue at position 627 (Lys627) of mouse MTF-1. Small ubiquitin-like modifier (SUMO)-1 was fused to the C terminus of MTF-1 to mimic the sumoylated form of the protein and it suppressed the transcriptional activity of MTF-1. The nuclear translocation activity, DNA-binding activity, and protein stability of SUMO-fused MTF-1 are similar to that of wild type MTF-1. The level of sumoylation was reduced by metal in a dose- and time-dependent manner. The fact that zinc reduces MTF-1 sumoylation makes the suppressive role of sumoylated MTF-1 in transcription physiologically less significant because the SUMO moiety of MTF-1 is removed when MTF-1 translocates into the nucleus.
    We further identified a SUMO-interacting motif (SIM) on MTF-1. Remarkably, MTF-1 binds sumoylated MTF-1 and/or other cellular factors in a SIM-dependent manner. This interaction was disrupted by treating cells with zinc. Gel permeation chromatography demonstrated that MTF-1 forms SIM-dependent complexes. This cross-interaction transpires in the cytoplasm and markedly reduces upon nuclear translocation. It can therefore be concluded that SUMO conjugation and the SIM on MTF-1 do not play a critical role in suppressing transcriptional activity. Instead, MTF-1 forms complexes with cellular factors through SIM and SUMO moiety in the cytoplasm. The result explores a new understanding for the mode of MTF-1 assembly and regulation in cells.

    中文摘要 i 英文摘要 iii 中英文對照表 iv 縮名全名對照表 vi 目錄 viii 第一章 前言 1 第二章 材料方法 27 第三章 實驗結果 43 第四章 討論 63 參考文獻 74 附圖 90 附表 119 著作表 120

    Adams TK, Saydam N, Steiner F, Schaffner W, Freedman JH (2002) Activation of gene expression by metal-responsive signal transduction pathways. Environ Health Perspect 110 Suppl 5: 813-817

    Andersen RD, Piletz JE, Birren BW, Herschman HR (1983) Levels of metallothionein messenger RNA in foetal, neonatal and maternal rat liver. Eur J Biochem 131: 497-500

    Ando M, Shimizu M, Sayato Y, Tanimura A, Tobe M (1981) The inhibition of vitamin D-stimulated intestinal calcium transport in rats after continuous oral administration of cadmium. Toxicol Appl Pharmacol 61: 297-301

    Andrews GK, Lee DK, Ravindra R, Lichtlen P, Sirito M, Sawadogo M, Schaffner W (2001) The transcription factors MTF-1 and USF1 cooperate to regulate mouse metallothionein-I expression in response to the essential metal zinc in visceral endoderm cells during early development. EMBO J 20: 1114-1122

    Auf der Maur A, Belser T, Elgar G, Georgiev O, Schaffner W (1999) Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol Chem 380: 175-185

    Auf der Maur A, Belser T, Wang Y, Gunes C, Lichtlen P, Georgiev O, Schaffner W (2000) Characterization of the mouse gene for the heavy metal-responsive transcription factor MTF-1. Cell Stress Chaperones 5: 196-206

    Aydemir TB, Blanchard RK, Cousins RJ (2006) Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci U S A 103: 1699-1704

    Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435: 979-982

    Bailey D, O'Hare P (2004) Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem 279: 692-703

    Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280: 275-286

    Beattie JH, Black DJ, Wood AM, Trayhurn P (1996) Cold-induced expression of the metallothionein-1 gene in brown adipose tissue of rats. Am J Physiol 270: R971-977

    Best JL, Ganiatsas S, Agarwal S, Changou A, Salomoni P, Shirihai O, Meluh PB, Pandolfi PP, Zon LI (2002) SUMO-1 protease-1 regulates gene transcription through PML. Mol Cell 10: 843-855

    Bies J, Markus J, Wolff L (2002) Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem 277: 8999-9009

    Bittel D, Dalton T, Samson SL, Gedamu L, Andrews GK (1998) The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem 273: 7127-7133

    Bittel DC, Smirnova IV, Andrews GK (2000) Functional heterogeneity in the zinc fingers of metalloregulatory protein metal response element-binding transcription factor-1. J Biol Chem 275: 37194-37201

    Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13: 971-982

    Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21: 349-357

    Bremner I (1987) Nutritional and physiological significance of metallothionein. Experientia Suppl 52: 81-107

    Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland GR, Schaffner W (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res 22: 3167-3173

    Chen WY, John JA, Lin CH, Chang CY (2002) Molecular cloning and developmental expression of zinc finger transcription factor MTF-1 gene in zebrafish, Danio rerio. Biochem Biophys Res Commun 291: 798-805

    Chen X, Agarwal A, Giedroc DP (1998) Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Biochemistry 37: 11152-11161

    Chen X, Zhang B, Harmon PM, Schaffner W, Peterson DO, Giedroc DP (2004) A novel cysteine cluster in human metal-responsive transcription factor 1 is required for heavy metal-induced transcriptional activation in vivo. J Biol Chem 279: 4515-4522

    Cheng Z, Ke Y, Ding X, Wang F, Wang H, Wang W, Ahmed K, Liu Z, Xu Y, Aikhionbare F, Yan H, Liu J, Xue Y, Yu J, Powell M, Liang S, Wu Q, Reddy SE, Hu R, Huang H, Jin C, Yao X (2008) Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response. Oncogene 27: 931-941

    Chupreta S, Holmstrom S, Subramanian L, Iniguez-Lluhi JA (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 25: 4272-4282

    Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281: 24085-24089

    Cramer M, Nagy I, Murphy BJ, Gassmann M, Hottiger MO, Georgiev O, Schaffner W (2005) NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biol Chem 386: 865-872

    Dalton T, Fu K, Palmiter RD, Andrews GK (1996a) Transgenic mice that overexpress metallothionein-I resist dietary zinc deficiency. J Nutr 126: 825-833

    Dalton TP, Bittel D, Andrews GK (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol 17: 2781-2789

    Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996b) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271: 26233-26241

    Daniels PJ, Andrews GK (2003) Dynamics of the metal-dependent transcription factor complex in vivo at the mouse metallothionein-I promoter. Nucleic Acids Res 31: 6710-6721

    Datta J, Majumder S, Kutay H, Motiwala T, Frankel W, Costa R, Cha HC, MacDougald OA, Jacob ST, Ghoshal K (2007) Metallothionein expression is suppressed in primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/enhancer binding protein alpha by phosphatidylinositol 3-kinase signaling cascade. Cancer Res 67: 2736-2746

    Deng DX, Chakrabarti S, Waalkes MP, Cherian MG (1998) Metallothionein and apoptosis in primary human hepatocellular carcinoma and metastatic adenocarcinoma. Histopathology 32: 340-347

    Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26: 4489-4498

    Dobreva G, Dambacher J, Grosschedl R (2003) SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 17: 3048-3061

    Doz F, Roosen N, Rosenblum ML (1993) Metallothionein and anticancer agents: the role of metallothionein in cancer chemotherapy. J Neurooncol 17: 123-129

    Du JX, McConnell BB, Yang VW (2010) A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Kruppel-like factor 4. J Biol Chem 285: 28298-28308

    Durnam DM, Palmiter RD (1984) Induction of metallothionein-I mRNA in cultured cells by heavy metals and iodoacetate: evidence for gratuitous inducers. Mol Cell Biol 4: 484-491

    Ebadi M, Leuschen MP, el Refaey H, Hamada FM, Rojas P (1996) The antioxidant properties of zinc and metallothionein. Neurochem Int 29: 159-166

    Garcia-Dominguez M, Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 1789: 451-459

    Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947-956

    Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18: 2046-2059

    Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT (2003) P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11: 1043-1054

    Goering PL, Klaassen CD (1984) Tolerance to cadmium-induced hepatotoxicity following cadmium pretreatment. Toxicol Appl Pharmacol 74: 308-313

    Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38: 232-242

    Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2: ra24

    Gong L, Li B, Millas S, Yeh ET (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448: 185-189

    Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276: 18513-18518

    Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17: 37-50

    Green CJ, Lichtlen P, Huynh NT, Yanovsky M, Laderoute KR, Schaffner W, Murphy BJ (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res 61: 2696-2703

    Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A, Schaffner W (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17: 2846-2854

    Gunther V, Davis AM, Georgiev O, Schaffner W (2012) A conserved cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1). Biochim Biophys Acta 1823: 476-483

    Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36: 837-841

    Han Y, Huang C, Sun X, Xiang B, Wang M, Yeh ET, Chen Y, Li H, Shi G, Cang H, Sun Y, Wang J, Wang W, Gao F, Yi J (2010) SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J Biol Chem 285: 12906-12915

    Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102-4110

    Hardeland U, Steinacher R, Jiricny J, Schar P (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21: 1456-1464

    Haroon ZA, Amin K, Lichtlen P, Sato B, Huynh NT, Wang Z, Schaffner W, Murphy BJ (2004) Loss of metal transcription factor-1 suppresses tumor growth through enhanced matrix deposition. FASEB J 18: 1176-1184

    Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1-12

    Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13: 2870-2875

    Hishikawa Y, Abe S, Kinugasa S, Yoshimura H, Monden N, Igarashi M, Tachibana M, Nagasue N (1997) Overexpression of metallothionein correlates with chemoresistance to cisplatin and prognosis in esophageal cancer. Oncology 54: 342-347

    Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141

    Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276: 40263-40267

    Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565-576

    Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A 95: 3489-3494

    Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R (2007) Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods 4: 245-250

    Jiang H, Daniels PJ, Andrews GK (2003) Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter. J Biol Chem 278: 30394-30402

    Jiang H, Fu K, Andrews GK (2004) Gene- and cell-type-specific effects of signal transduction cascades on metal-regulated gene transcription appear to be independent of changes in the phosphorylation of metal-response-element-binding transcription factor-1. Biochem J 382: 33-41

    Jiang LJ, Maret W, Vallee BL (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A 95: 3483-3488

    Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355-382

    Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799-26802

    Kagi JH, Himmelhoch SR, Whanger PD, Bethune JL, Vallee BL (1974) Equine hepatic and renal metallothioneins. Purification, molecular weight, amino acid composition, and metal content. J Biol Chem 249: 3537-3542

    Kagi JH, Kojima Y, Kissling MM, Lerch K (1979) Metallothionein: an exceptional metal thiolate protein. Ciba Found Symp: 223-237

    Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491-500

    Kelly EJ, Quaife CJ, Froelick GJ, Palmiter RD (1996) Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. J Nutr 126: 1782-1790

    Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8: 550-555

    Kim J, Cantwell CA, Johnson PF, Pfarr CM, Williams SC (2002) Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J Biol Chem 277: 38037-38044

    Kim JH, Choi HJ, Kim B, Kim MH, Lee JM, Kim IS, Lee MH, Choi SJ, Kim KI, Kim SI, Chung CH, Baek SH (2006) Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat Cell Biol 8: 631-639

    Kobayashi S, Kimura M (1980) Different inducibility of metallothionein in various mammalian cells in vitro. Toxicol Lett 5: 357-362

    Koizumi S, Suzuki K, Ogra Y, Gong P, Otuska F (2000) Roles of zinc fingers and other regions of the transcription factor human MTF-1 in zinc-regulated DNA binding. J Cell Physiol 185: 464-472

    Kuo HY, Chang CC, Jeng JC, Hu HM, Lin DY, Maul GG, Kwok RP, Shih HM (2005) SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A 102: 16973-16978

    Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275: 34803-34809

    LaRochelle O, Gagne V, Charron J, Soh JW, Seguin C (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276: 41879-41888

    Lazo JS, Kuo SM, Woo ES, Pitt BR (1998) The protein thiol metallothionein as an antioxidant and protectant against antineoplastic drugs. Chem Biol Interact 111-112: 255-262

    Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, Anderson P (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem 273: 6503-6507

    Lee YK, Thomas SN, Yang AJ, Ann DK (2007) Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem 282: 1595-1606

    Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol Cell Biol 28: 4275-4284

    Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24: 341-354

    Lin HK, Bergmann S, Pandolfi PP (2004) Cytoplasmic PML function in TGF-beta signalling. Nature 431: 205-211

    Lin MC, Liu YC, Tam MF, Lu YJ, Hsieh YT, Lin LY (2011) PTEN interacts with metal-responsive transcription factor 1 and stimulates its transcriptional activity. Biochem J 441: 367-377

    Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W (2009) Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 29: 6283-6293

    Liu J, Liu Y, Habeebu SS, Klaassen CD (1999) Metallothionein-null mice are highly susceptible to the hematotoxic and immunotoxic effects of chronic CdCl2 exposure. Toxicol Appl Pharmacol 159: 98-108

    Liu Y, Liu J, Iszard MB, Andrews GK, Palmiter RD, Klaassen CD (1995) Transgenic mice that overexpress metallothionein-I are protected from cadmium lethality and hepatotoxicity. Toxicol Appl Pharmacol 135: 222-228

    Liuzzi JP, Bobo JA, Lichten LA, Samuelson DA, Cousins RJ (2004) Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proc Natl Acad Sci U S A 101: 14355-14360

    Macauley MS, Errington WJ, Okon M, Scharpf M, Mackereth CD, Schulman BA, McIntosh LP (2004) Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1. J Biol Chem 279: 49131-49137

    Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107

    Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17: 1706-1715

    Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A 95: 3478-3482

    Martin S, Nishimune A, Mellor JR, Henley JM (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447: 321-325

    Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135: 1457-1470

    Matunis MJ, Zhang XD, Ellis NA (2006) SUMO: the glue that binds. Dev Cell 11: 596-597

    McHugh PC, Wright JA, Brown DR (2011) Transcriptional regulation of the beta-synuclein 5'-promoter metal response element by metal transcription factor-1. PLoS One 6: e17354

    McNally BA, Trgovcich J, Maul GG, Liu Y, Zheng P (2008) A role for cytoplasmic PML in cellular resistance to viral infection. PLoS One 3: e2277

    Melchior F (2000) SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol 16: 591-626

    Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6: 793-807

    Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35: 35-70

    Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275: 36316-36323

    Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32: 286-295

    Murphy BJ, Kimura T, Sato BG, Shi Y, Andrews GK (2008) Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1 and hypoxia-inducible transcription factor-1alpha. Mol Cancer Res 6: 483-490

    Nefkens I, Negorev DG, Ishov AM, Michaelson JS, Yeh ET, Tanguay RM, Muller WE, Maul GG (2003) Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently. J Cell Sci 116: 513-524

    Nordberg GF (1989) Modulation of metal toxicity by metallothionein. Biol Trace Elem Res 21: 131-135

    Ogra Y, Suzuki K, Gong P, Otsuka F, Koizumi S (2001) Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J Biol Chem 276: 16534-16539

    Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, Chang HM, Yeh ET (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157: 4277-4281

    Ouyang J, Shi Y, Valin A, Xuan Y, Gill G (2009) Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 34: 145-154

    Palmiter RD, Findley SD, Whitmore TE, Durnam DM (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A 89: 6333-6337

    Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109-120

    Pichler A, Knipscheer P, Oberhofer E, van Dijk WJ, Korner R, Olsen JV, Jentsch S, Melchior F, Sixma TK (2005) SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 12: 264-269

    Pickart CM (2004) Back to the future with ubiquitin. Cell 116: 181-190

    Potter BM, Feng LS, Parasuram P, Matskevich VA, Wilson JA, Andrews GK, Laity JH (2005) The six zinc fingers of metal-responsive element binding transcription factor-1 form stable and quasi-ordered structures with relatively small differences in zinc affinities. J Biol Chem 280: 28529-28540

    Qu J, Liu GH, Wu K, Han P, Wang P, Li J, Zhang X, Chen C (2007) Nitric oxide destabilizes Pias3 and regulates sumoylation. PLoS One 2: e1085

    Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33: 7250-7259

    Quimby BB, Yong-Gonzalez V, Anan T, Strunnikov AV, Dasso M (2006) The promyelocytic leukemia protein stimulates SUMO conjugation in yeast. Oncogene 25: 2999-3005

    Radtke F, Georgiev O, Muller HP, Brugnera E, Schaffner W (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res 23: 2277-2286

    Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12: 1355-1362

    Raffa GD, Wohlschlegel J, Yates JR, 3rd, Boddy MN (2006) SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J Biol Chem 281: 27973-27981

    Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435: 687-692

    Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10: 831-842

    Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252-6258

    Sauer JM, Waalkes MP, Hooser SB, Baines AT, Kuester RK, Sipes IG (1997) Tolerance induced by all-trans-retinol to the hepatotoxic effects of cadmium in rats: role of metallothionein expression. Toxicol Appl Pharmacol 143: 110-119

    Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277: 20438-20445

    Saydam N, Georgiev O, Nakano MY, Greber UF, Schaffner W (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276: 25487-25495

    Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4: 690-699

    Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373: 78-81

    Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24: 331-339

    Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36: 271-279

    Shi Y, Amin K, Sato BG, Samuelsson SJ, Sambucetti L, Haroon ZA, Laderoute K, Murphy BJ (2010) The metal-responsive transcription factor-1 protein is elevated in human tumors. Cancer Biol Ther 9: 469-476

    Smirnova IV, Bittel DC, Ravindra R, Jiang H, Andrews GK (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275: 9377-9384

    Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101: 14373-14378

    Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280: 40122-40129

    Stehmeier P, Muller S (2009) Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell 33: 400-409

    Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191

    Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH (2011) MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 10: 3176-3188

    Stuart GW, Searle PF, Palmiter RD (1985) Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 317: 828-831

    Studer R, Vogt CP, Cavigelli M, Hunziker PE, Kagi JH (1997) Metallothionein accretion in human hepatic cells is linked to cellular proliferation. Biochem J 328 ( Pt 1): 63-67

    Subramanian L, Benson MD, Iniguez-Lluhi JA (2003) A synergy control motif within the attenuator domain of CCAAT/enhancer-binding protein alpha inhibits transcriptional synergy through its PIASy-enhanced modification by SUMO-1 or SUMO-3. J Biol Chem 278: 9134-9141

    Suico MA, Nakamura H, Lu Z, Saitoh H, Shuto T, Nakao M, Kai H (2006) SUMO down-regulates the activity of Elf4/myeloid Elf-1-like factor. Biochem Biophys Res Commun 348: 880-888

    Taylor AP, Goldenberg DM (2007) Role of placenta growth factor in malignancy and evidence that an antagonistic PlGF/Flt-1 peptide inhibits the growth and metastasis of human breast cancer xenografts. Mol Cancer Ther 6: 524-531

    Terui Y, Saad N, Jia S, McKeon F, Yuan J (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279: 28257-28265

    Thomas JP, Bachowski GJ, Girotti AW (1986) Inhibition of cell membrane lipid peroxidation by cadmium- and zinc-metallothioneins. Biochim Biophys Acta 884: 448-461

    Todd WR, Elvehjem, C. A. & Hart, E. B. (1934) Zinc in the nutrition of the rat. Am J Physiol 107: 145–156

    Tsujikawa K, Imai T, Kakutani M, Kayamori Y, Mimura T, Otaki N, Kimura M, Fukuyama R, Shimizu N (1991) Localization of metallothionein in nuclei of growing primary cultured adult rat hepatocytes. FEBS Lett 283: 239-242

    Uenishi R, Gong P, Suzuki K, Koizumi S (2006) Cross talk of heat shock and heavy metal regulatory pathways. Biochem Biophys Res Commun 341: 1072-1077

    Vasak M, Overnell J, Good M (1987) Spectroscopic and chemical approaches to the study of metal-thiolate clusters in metallothionein (MT). Experientia Suppl 52: 179-189

    Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5: 2298-2310

    Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ (1994) Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 102 Suppl 2: 5-46

    Wang C, Bhattacharyya MH (1993) Effect of cadmium on bone calcium and 45Ca in nonpregnant mice on a calcium-deficient diet: evidence of direct effect of cadmium on bone. Toxicol Appl Pharmacol 120: 228-239

    Wei F, Scholer HR, Atchison ML (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282: 21551-21560

    WHO I (1992) Environmental health criteria. . Geneva: World Health Organization

    Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428: 133-145

    Winge DR, Miklossy KA (1982) Domain nature of metallothionein. J Biol Chem 257: 3471-3476

    Wlostowski T (1993) Involvement of metallothionein and copper in cell proliferation. Biometals 6: 71-76

    Woo ES, Lazo JS (1997) Nucleocytoplasmic functionality of metallothionein. Cancer Res 57: 4236-4241

    Wu FY, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7: 251-272

    Wyatt D, Malik R, Vesecky AC, Marchese A (2011) Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem 286: 3884-3893

    Yang SH, Jaffray E, Hay RT, Sharrocks AD (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell 12: 63-74

    Yang SH, Sharrocks AD (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13: 611-617

    Yu CW, Chen HC, Lin LY (1998) Transcription of metallothionein isoform promoters is differentially regulated in cadmium-sensitive and -resistant CHO cells. J Cell Biochem 68: 174-185

    Yu CW, Chen JH, Lin LY (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS Lett 420: 69-73

    Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26: 1786-1794

    Zhang B, Egli D, Georgiev O, Schaffner W (2001) The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21: 4505-4514

    Zhang B, Georgiev O, Hagmann M, Gunes C, Cramer M, Faller P, Vasak M, Schaffner W (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23: 8471-8485

    Zhang H, Saitoh H, Matunis MJ (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22: 6498-6508

    Zheng G, Yang YC (2004) ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J Biol Chem 279: 42410-42421

    Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95: 2748-2752

    陳泓志 (2007) 決定金屬感應因子進核作用之因子的研究
    國立清華大學 碩士論文

    陳湘棋 (2009) 利用融合蛋白研究金屬感應轉錄因子SUMO化之特性.
    國立清華大學 碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE