研究生: |
蕭心瑜 Shin-Yu Shiao |
---|---|
論文名稱: |
高分子與鐵複合材料之製備 Preparation of Iron-Loaded Nanocomposite |
指導教授: |
談駿嵩
Chung-Sung Tan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 超臨界流體 、複合材料 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用高分子不溶於超臨界流體且超臨界流體可膨潤高分子的特性,在高分子基材中放入吸氧劑鐵,以降低基材的透氧率。在研究過程中選用了三種不同的高分子基材,分別為PC膜,PET酯粒及PET膜,至於鐵的前驅物則為Fe(acac)3和Fe3(CO)12。製備步驟是先利用超臨界流體膨潤高分子,並使鐵的前驅物溶於超臨界流體中藉由擴散進入基材中,再利用氫氣將被包覆在高分子中的前驅物還原,使之成為Fe/Polymer複合材料。
實驗結果顯示,當以Fe(acac)3為前驅物時,含浸條件為60 ℃、2000 psi及8 h時,PET酯粒之重量增加率可達1.8 %;相同含浸條件下PC膜之重量增加率可達1.9%。但因Fe(acac)3/ PET酯粒與Fe(acac)3/PC膜於高溫及高壓下皆有融化或崩塌的情況發生,無法在高溫高壓系統下進行還原。
當以Fe3(CO)12為前驅物時,在Fe3(CO)12/PC膜的含浸系統中,提升溫度與添加共溶劑甲醇皆有利於重量增加率的提升。在15 mL的反應器中,PC膜及Fe3(CO)12的置入量皆為0.1 g時,70 ℃及2000 psi的含浸條件下,加入0.1 mL的甲醇,PC膜之重量增加率可達1.13 %,且當共溶劑添加量為0.4 mL時,PC會產生結晶。
□□□bFe3(CO)12/PET膜的含浸系統中,提高溫度(由70增高至120 ℃)並無法有效使重量增加率提升。將Fe3(CO)12 /PET利用氫氣在150 ℃及150 psi條件下還原,並且進行透氧率測試,所測得的透氧率反會因含浸量提升而降低。此或因PET經超臨界二氧化碳膨潤過後,自由體積變大而使得透氧率增加,以及前驅物含浸量太少,無法有效阻隔氧氣的通過,此外可能是在還原條件下並未完全將Fe3(CO)12還原成鐵。
Berens, A. R.,Huvard, G. S.,Krosmeyer, R. W.,Kuing, F. W.,”Application of Compressed Carbon Dioxide in the Incorporation of Additives into Polymers”, J. Apply. Polym. Sci., 46, 231-242, 1992.
Brown, G. D. and Watkins, J. J.,” Preparation of Nanocomposites by Selective Matellization in CO2-Swollen Cylindrical Diblock Copolymers
Templates”, Polym. Mater. Sci. Eng., 84, 130-131, 2001.
Chiou, J. S., Barlow, J. W., Paul, D. R., ”Plasticization of Glassy Polymers by CO2”, J. Appl. Polym. Sci. , 30, 2633-2642, 1985.
Chow, T. S., “Molecular Interpretation of Glass Transition Temperature
of Polymer-Diluent Systems”, Macromolecules, 13, 362-364, 1980.
Crowley, T. A., Zieglar, K. J., Lyons, D. M., Erts, D., Olin, H., Morris,
M. A., Holmes, J. D., ”Synthesis of Metal and Metal Oxide Nanowire and
Nanotube Arrays within a Mesoporous Silica Template”, Chem. Mater.,
15, 3518-3522, 2003.
Eric, J. R., Aaron, M. S., Joan, F. B., “Spectroscopy, Solubility, and Modeling of Cosolvent, Effects on Metal Chelate Complexs in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res., 40, 980-989, 2001.
Erkey, C., Diz, E. L., Suss-Fink, G., Dong, X., “Hydroformylation of Ethylene in Using Ru3(CO)12 as a Catalyst Precursor”, Catalysis Communication, 3, 213-219, 2002.
Hu, X., Lesser, A. J., “Enhanced Crystallization of Bisphanol-A Polycarbonate by Nano-Scale Clays in the Presence of Supercritical Carbon-Dioxide”, Polym., 45, 2333-2340, 2004.
Jia, L., Xu, J., ”A Single Method for Predition of Gas Permeability of Polymers from Their Molecular Structure ”, Polymer J., 23, 417-425, 1991.
Kawahara, Y., Kikutani, T.,”Diffusion of Organometallic Compounds into High-Speed Spun Poly(Ethylene Terephthalate) Fiber in Supercritical Carbon Dioxide Fluid”, J. Macro. Sci, Phys., B(39), 561-567, 2000.
Li, D., Han, B., ”Impregnation of Polyethylene(PE) with Styrene Using Supercritical CO¬2 as the Swelling Agent and Preparation of PE/Polystyrene”, Ind. Eng. Chem. Res., 31, 4506-4509, 2000.
Liao, X., Li, G., Sun, X. H., He, J. S., ”Effect of Supercritical CO2 and
Cosolvent on Crystallization and Melting Behavior of Bisphenol-A Polycarbonate ”, Huaxue Xuebao, 61, 1697-1699, 2003.
Mercier, J. P., Legras, R., “Correlation between the Enthalpy of Fusion and the Specific Volume of Crystallized Polycarbonate of Bisphanol-A”, J. Polym. Sci. Part B: Polym. Lett., 8, 645-650, 1970.
Muth, O.,Hirth, Th.,Vogel, H.,”Polymer Modification by Supercritical Impregnation”, J. Supercrit. Fluids., 17, 65-72, 2000.
Popov, V. K., Bagratashvili, V. N., Krasnov, A. P., Said-Galiyev, E. E., Nikitin, L. N.; Afonicheva, O. V., Aliev, A. D, ” Modification of Tribological Properties of Polyarylate by Supercritical Fluid Impregnation of Copper(II) Hexafluoroacetylacetonate”, Tribology Letters, 5, 297-301, 1998.
Rosolovsky, J., Boggess R.K., Rubira, A. F., Taylor, L. T., Stoakley, D. M., Clair, A. K. St.,”Supercritical Fluid Infusion of Siliver into Polyimide of Varying Chemical Composition”, J. Mater. Res., 12, 3127-3133, 1997.
Schnitzler, J., Eggers, R.,” Mass Transfer in Polymers in a Supercritical CO2-Atmosphere”, J. Supercrit. Fluids., 16, 81-92, 1999.
Shieh, Y. T., Lin, Y. G., ” Equilibrium Solubility of CO2 in Rubbery EVA
over a Wide Pressure Range: Effects of Carbonyl Group Content and Crystallinity ”, Polym., 43, 1849-1856, 2002.
Shieh, Y. T., Su, J. H., Manivannan, G., Lee, P. H. C., Sawan, S. P., and
Spall, W. D., “Interaction of Supercritical Carbon Dioxide with Polymers.I. Crystalline Polymers”, J. Appl. Polym. Sci., 59, 695-705, 1996 a.
Shieh, Y. T., Su, J. H., Manivannan, G., Lee, P. H. C., Sawan, S. P., and
Spall, W. D., “Interaction of Supercritical Carbon Dioxide with Polymers.
II. Amorphous Polymers”, J. Appl. Polym. Sci., 59, 707-717, 1996 b.
Shim, I. W., Choi, S. C., Noh, W. T., Kwon, J., Cho, J. Y., Chae, D. Y., Kim, K. S., “Preparption of Iron Nanoparicles in Cellulose Acetate Polymer and Their Reaction Chemistry in the Polymer”, Bull. Korean Chem. Soc., 22, 772-774, 2001.
Srannett, V., “The Transport of Gases in Synthetic Polymeric Membranes-an Historic Perspective”, J. Membr. Sci., 3, 97-115, 1978.
Stern, S. A. and Walawender, W. P., “Analysis of Membrane Separation Parameters ”, Separation Sci. , 4, 129-159, 1969.
Suwandi, M. S., Stern, S. A., “Transport of Heavy Organic Vapors through Silicone Rubber”, J. Polym. Sci., Polym. Phys. Ed., 11, 663-681, 1973.
Tang, M., Du, T. B., Chen, Y. P., ”Sorption and Diffusion of Supercritical Carbon Dioxide in Polycarbonate ”, J. Supercrit. Fluids, 28, 207-218, 2004.
Tomasko, D. L., Han X., Liu D., Gao W., ”Supercritical Fluid Applications in Polymer Nanocomposites”, Current Opinion in Solid State & Materials Science, 7, 407-412, 2003 a.
Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., Lee, L. J., Koelling, K. W., ”A Review of CO¬2 Applications in the Processing Polymers ”, Ind, Eng. Chem. Res., 42, 6431-6456, 2003 b.
Stannett, V., “The Transport of Gases in Synthetic Polymeric Membranes-an Historic Perspective”, J. Membr. Sci., 3, 97, 1987.
Stern, S. A., Walawender, W. P., “Analysis of Membranes Separation Parameters”, Separation Sci., 4, 129, 1969.
Watkins, J. J., and McCarthy, T. J., ”Polymerization in Supercritical Fluid-Swollen Polymers: A New Route to Polymer Blends”, Macromolecules, 27, 4845-4847, 1994.
Watkins, J. J., and McCarthy, T. J., ”Polymer/Metal Nanocomposite Synthesis in Supercritical CO2”, Chem. Meter., 7, 1991-1994, 1995.
Yoda, S., Hasegawa, A., Suda, H., Uchimaru, Y.,Haraya, K., Tsuij, T., Otake, K.,”Preparatiom of a Platinum and Palladium/Polyimide Nanocomposite Molecular Sieve Membrane via Supercritical Impergnation”, Chem. Mater. 16, 2363-2368, 2004.
張良祥,”含胺基之聚胺基甲酸酯與聚尿素─胺基甲酸酯的合成、鑑定及氣體吸附與透過性質的研究”, 成功大學化工系博士論文,1996。