簡易檢索 / 詳目顯示

研究生: 張仁豪
Chang Jen-Hao
論文名稱: 正交軸投影法與樹狀決策在汽車牌照辨識的研究
Vehicle License Plate Recognition Using Orthogonal Projection and Tree Decisions
指導教授: 莊克士
Chuang K. S.
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 68
中文關鍵詞: 汽車牌照辨識字元辨識字元分割正交軸投影法累計差值比較法樹狀決策
外文關鍵詞: license plate recognition, LPR, optical character recognition(OCR), character segmentation, orthogonal projection, cumulative difference values (CDV), tree decisions
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究主要在探討正交軸投影法(orthogonal projection)與樹狀決策(tree decision)作為汽車牌照辨識中的應用。汽車牌照辨識系統在停車場管理與安全區域車輛進出管制和警察單位執法等方面的應用可以有效節省人力與資源。本研究利用正交軸投影與字元輪廓型態和投影剖面特徵等決策歸類作為牌照字元辨識的主軸。本文分為主要的幾個部分,第一個部分是影像中汽車牌照的定位,第二個部分是牌照中字元的偵測與分割,第三個部分是牌照字元的辨識。而字元辨識的部分是本論文的中心,探討利用字元的垂直與水平方向的灰階投影所呈現的數值分佈,作為比較的基礎。在經過歸一化後,每一個待測字元將與標準字元作比較,計算其累計差異值(cumulative difference values, CDV)並由累計差值的大小作為字元辨識的依據。為提高辨識的正確率,根據字元的輪廓特徵與投影剖面的差異,訂定判別分類的決策,作為累計差值法的輔助辨識方法。在59組影像中,成功定位出牌照並判讀成功的比率為86.44%。在312個字元中,利用正交軸投影與樹狀決策作為字元辨識方法的辨識率為99.68%

    關鍵詞:汽車牌照辨識、字元辨識、字元分割、正交軸投影法、累計差值比較法、樹狀決策。


    Abstract
    Our purpose of this research is to utilize the measures of orthogonal projection and tree decisions on vehicle license plate recognition (LPR). Our research uses orthogonal projection as the core of character recognition. In order to raise the recognition rate, tree decisions based on features of character contours and projection profiles are employed. This thesis consists of three main parts. The first part is to locate the license plate in an image. The second part is to detect and segment each character of the license plate. The third part is on character recognition of license plates. Character recognition is more concerned in our research. Horizontal and vertical projections on orthogonal axes are adopted as comparisons between input characters and standard ones. An argument called cumulative difference values (CDV) is introduced to give a solution from standard database. Tree decisions are added to assist in distinguishing characters. The recognition rate from 59 images is 86.44%, and the recognition rate of 312 characters is 99.68%.

    Keywords: license plate recognition, LPR, optical character recognition (OCR), character segmentation, orthogonal projection, cumulative difference values (CDV), tree decisions.

    目 錄 中文摘要…………………………………………………………I 英文摘要…………………………………………………………II 目錄………………………………………………………………III 圖目錄……………………………………………………………V 表目錄……………………………………………………………VII 第一章 前言……………………………………………………1 1.1 研究動機與源由…………………………………3 1.2 研究方向與文獻回顧……………………………5 1.3 論文架構…………………………………………10 第二章 研究方法………………………………………………11 2.1 內容概要…………………………………………11 2.2 階的轉換…………………………………………12 2.3 牌照部分的擷取…………………………………15 2.3.1 汽車牌照的幾何性質…………………………15 2.3.2 梯度運算子……………………………………17 2.3.3 灰階直方圖與累積分佈機率…………………20 2.3.4 中值濾波………………………………………22 2.3.5 車牌主體的標定………………………………24 2.4 影像增強與對比拉大……………………………29 2.5 閾值處理的二值影像……………………………32 第三章 字元分割與辨識………………………………………34 3.1 字元分割…………………………………………34 3.2 正交軸投影法……………………………………37 3.3 投影的內插………………………………………39 3.4 累計差值比較法…………………………………42 3.5 字元特異性分類與樹狀決策……………………43 第四章 結果與討論……………………………………………58 4.1 實驗結果…………………………………………58 4.2 結果討論…………………………………………63 第五章 結論與展望……………………………………………65 參考文獻 …………………………………………………………67

    參考文獻
    1. R.C. Gonzalez, R. E. Woods, Digital Image Processing, MA,
    Adsison - Wesley, 1993.
    2. W. K. Pratt, Digital Image Processing, John-Wiley & Sons,
    1991.
    3. M. Rafael, Application of Machine Vision to Traffic
    Monitoring and Control, IEEE Vehicular Technology, 38, 112-
    122, 1989.
    4. K. Yamada, T. Nakano, S. Yamamoto, A Vision Sensor Having an
    Expanded Dynamic Range for Autonomous Vehicles, IEEE Trans.
    Vehicular Technology, 47, 332-341, 1998.
    5. S. G. Chamberlain, J. P. Y. Lee, A Novel Wide Dynamic Range
    Silicon Photodetector and Linear Imaging Array, IEEE Trans.
    Electron Devices, ED-31, 175-182, 1984.
    6. G. Auty et al., An Image Acquisition System for Traffic
    Application, Proc. SPIE, 2416, 119-133, 1995.
    7. M. Takatoo et al., Gray Scale Image Processing Technology
    applied to Vehicle License Number Recognition System, Proc.
    IEEE Int. Workshop Industrial Applications of Machine Vision
    and Machine Intelligence, 76-79, 1987.
    8. Y. Cui, Q. Huang, Automatic License Extraction from Moving
    Vehicles, Proc. Int. Conf. Image Processing, 126-129, 1997.
    9. P. Comelli, P. Ferragina, M. N. Granieri, F. Stabile,
    Optical Recognition of Motor Vehicle License Plates, IEEE
    Trans. Vehicular Technology, 44, 1995.
    10. Q. D. Trier, A. K. Jain, T. Taxt, Feature Extraction
    Methods for Character Recognition---A Survey, Pattern
    Recognition, 29, 641-662, 1996.
    11. Y. Lu, M. Shridhar, Character Segmentation in Handwritten
    Words---An Overview, Pattern Recognition, 29, 77-96, 1996.
    12. D. Cheng, H. Yan, Recognition of Handwritten Digits based
    on Contour Information, Pattern Recognition, 31, 235-255,
    1998.
    13. G. Iannizzoto, L. Vita, Fast and Accurate Edge-Based
    Segmentation with No Contour Smoothing in 2-D Real Images,
    IEEE Trans. Image Processing, 9, 1232-1237, 2000.
    14. S. W. Lee, D. J. Lee, H. S. Park, A New Methodology for
    Gray-Scale Character Segmentation and Recognition, IEEE
    Trans. Pattern Analysis and Machine Intelligence, 18, 1045-
    1050, 1996.
    15. Y. Lu, Machine Printed Character Segmentation---An
    Overview, Pattern Recognition, 28, 67-80, 1995.
    16. H. Al-Yousefi, S. S. Udpa, Recognition of Arabic
    Characters, IEEE Trans. Pattern Analysis and Machine
    Intelligence, 14, 853-857, 1992.
    17. R. G. Casey, E. Lecolinet, A Survey of Methods Strategies
    in Character Segmentation, IEEE Trans. Pattern Analysis and
    Machine Intelligence, 18, 690-706, 1996.
    18. T. Naito, T. Tsukada, K. Yamada, K. Kozuka, S. Yamamoto,
    Robust License-Plate Recognition Method for Passing Vehicles
    Under Outside Environment, IEEE Trans. Vehicular Technology,
    49, 2309-2319, 2000.
    19. B. Hussain, M. R. Kabuka, A Novel Features Recognition
    Neural Network and its Applications to Character
    Recognition, IEEE Trans. Pattern Analysis and Machine
    Intelligence, 16, 98-106, 1994.
    20. P. Morns, S. Dlay, Character Recognition Using Fourier
    Descriptors And A New Form of Dynamic Semi-supervised Neural
    Network, Microelectronic Journal, 28, 73-84, 1997.
    21. W. A. Gowan, Optical Character Recognition Using Fuzzy
    Logic, Microprocessors and Microsystems, 423-434, 1995.
    22. J. W. T. Walsh, Photometry, Dover, New York, 1958.
    23. M. S. Kiver, Color Television Fundamentals, Mcgraw-Hill,
    New York, 1965.
    24. 吳成柯、戴善榮、程湘君、雲立實,數位影像處理(譯),儒林,台
    北,1996。
    25. A. Rosenfeld, A. C. KaK, Digital Picture Processing, New
    York, 1983.
    26. A. K. Jain, Fundamentals of Digital Image Processing,
    Prentice-Hall, New Jersey, 1989.
    27. Hi Tech Solutions OCR Products Ltd., Rishon Le-Zion,
    Israel, http://www.htsol.com/
    28. Perceptics Ltd., Tennessee, USA, http://www.perceptics.com/
    29. Zamir Recognition System Ltd., Jerusalem, Israel,
    http://www.zamir.com/
    30. W. N. Lie, Automatic Target Segmentation by Locally
    Adaptive Image Thresholding, IEEE Trans. Image Processing,
    4, 1036-1041, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE