研究生: |
張弘偉 Chang, Hong-Wei |
---|---|
論文名稱: |
以鈷氧化物為基材成長鈀奈米島之鈷鈀系統修補鈦氧化物團簇具高效氧氣還原之效率 Nanoscale TiOx Clusters Anchored on CoOx Supported Pd- Nano islands Facilitate High-Rate Oxygen Reduction Reaction Performance |
指導教授: |
陳燦耀
Chen, Tsan-Yao |
口試委員: |
王冠文
Wang, Kuan-Wen 林明緯 Lin, Ming-Wei 陳柏鈞 Chen, Po-Chun |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 氧氣還原反應 、質量活性 、點綴效應 、氧空缺 |
外文關鍵詞: | Oxygen reduction reaction, Mass activity, Decoration effect, Oxygen vacancy. |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用濕式化學還原法,利用硼氫化納(NaBH4)當作還原劑依序將鈷、鈀、鈦金屬離子還原至活性碳上,形成以鈷氧化物為基底上面成長鈀奈米島最後修飾鈦氧化物奈米團簇之層狀堆疊的三元金屬奈米觸媒,且透過加入不同比例之鈦(1~3wt%)修飾觸媒表面,探討在表面上修飾不同比例之鈦對氧還原反應性之影響。實驗結果證明加入1.0 wt%的鈦修補鈷鈀奈米觸媒的表面可使其在氧還原反應位於0.85V vs RHE的電位下質量活性(M.A.)為商用鉑觸媒(J.M. Pt/C)之145倍。而透過電化學循環伏安法與一氧化碳剝除法來分析觸媒表面組成,再利用XRD(X光繞射光譜)、XAS(X光吸收光譜)和TEM(穿透式電子顯微鏡)分析觸媒結構,可證明將鈀成長在高度無序之鈷氧化物會限縮鈀粒徑大小(XRD結果約4 nm)並使鈀表面具高密度缺陷,而在鈷鈀基底上成長少量的鈦團簇能修補鈷鈀結構之缺陷使Pd有序化,並藉由配體效應改變表面Pd的電子結構搭配界面效應使鈷鈀鈦三元奈米觸媒之活性(M.A.)與動力學電流值(Jk)有效增加。本研究中所設計之鈷鈀鈦三元奈米觸媒(NCs),藉由調整鈦的比例,了解不同比例之鈦長在鈷鈀表面上對氧氣還原反應之影響,且因為非鉑基觸媒,能有效降低觸媒製造成本,而此種利用少量過渡金屬來修飾觸媒表面來發展高效率之氧還原觸媒將增加鹼性燃料電池的發展潛力。
In this study, to enhance and optimize nanocatalysts (NCs) performance for ORR, a series of ternary metallic NCs consisting of Ti atomic clusters decorated Pd nano-islands over CoOx support underneath (denoted by CPTi) in different molar ratios of Co/Pd from 0.05 to 0.3, are synthesized by using robust wet chemical reduction method with processes control.
The as-developed CPTi005 NC exhibits unprecedented high mass activity (MA) of 9724 mAmg-1 at 0.85 V vs RHE in 0.1 M KOH electrolyte towards ORR, which outperforms the commercial J.M.-Pt/C catalyst (67 mAmg- 1), more importantly, the CPTi005 NC exhibits remarkable durability when operated up to 16k accelerated durability test (ADT) cycles and retains its 100% performance as that of initial condition.
The surface composition of the catalyst is analyzed by electrochemical cyclic voltammetry(CV) and Co stripping method, and the structure of the catalyst is analyzed by XRD (X-ray diffraction spectroscopy), XAS (X-ray absorption spectroscopy) and TEM (transmission electron microscope) It can be proved that growing palladium on highly disordered cobalt oxide will limit the particle size of palladium (XRD results are about 4 nm) and make the surface of palladium have high-density defects, while growing a small amount of titanium clusters on CoPd substrates Repair the defects of the CoPd structure, and change the electronic structure of the surface Pd by the ligand effect, the activity (MA) and kinetic current value (Jk) of the CPTi ternary nanocatalyst Effectively increase. The CPTi ternary nanocatalysts (NCs) designed in this study are adjusted to the ratio of Titanium to understand the influence of different proportions of Titanium on the surface of Cobalt and Palladium on the oxygen reduction reaction. The catalyst can effectively reduce the manufacturing cost of the catalyst, and the use of a small amount of transition metal to modify the surface of the catalyst to develop a high-efficiency oxygen reduction catalyst will increase the development potential of alkaline fuel cells.
1. http://igeogers.weebly.com/the-energy-gap-and-energy-efficiency.html.
2. https://www.grandviewresearch.com/industry-analysis/fuel-cell-market.
3. Houchins, C., Kleen, G. J., Spendelow, J. S., Kopasz, J., Peterson, D., Garland, N. L., Ho, D. L., Marcinkoski, J., Martin, K. E., Tyler, R., & Papageorgopoulos, D. C. Membranes 2012, 2, 855-878.
4. Camci, Muhammet. University of Liecester 2015.
5. https://zh.wikipedia.org/wiki/%E5%82%AC%E5%8C%96%E5%89%82.
6. https://www.fuelcellstore.com/blog-section/polarization-curves.
7. B. Pollet, S. Kocha, I. Staffell. Current Opinion in Electrochemistry 2019, 16:90–95.
8. C. Sequeira, D. Santos, Walmar Baptista. Journal of the Brazilian Chemical Society 2016, Vol. 17, No. 5, 910-914.
9. Si F., Zhang Y., Yan L., Zhu J., Xiao M., Liu C., Xing W., Zhang J. Elsevier B.V. 2014 , pp. 133-170.
10. Tianlei Wang, A. Chutia, D. Brett, P. Shearing, Guanjie He, Guoliang Chai, I. Parkin. Energy Environ. Sci., 2021,14, 2639-2669.
11. J. Nørskov, J. Rossmeisl, and A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, H. Jónsson. J. Phys. Chem. B 2004, 108, 17886-17892.
12. Z. Seh, J. Kibsgaard, Colin F. Dickens, I. Chorkendorff, J. Nørskov, T. Jaramillo. Science 2017 355, eaad4998.
13. H. Wang, J. Lu. Chin. J. Chem. 2020, 38, 1422—1444.
14. A Taketoshi, M. Haruta. Chem. Lett. 2014, 43, 380–387.
15. W. Zhou, M. Li, O.L. Ding, S.H. Chan, L. Zhang, Y. Xue. Int. J. Hydrog. Energy, 2014, 39, pp. 6433-6442.
16. M. A. Molina-García and N. V. Rees. RSC Adv., 2016, 6 , 94669 —94681.
17. https://www.cabotcorp.com/.
18. Hilah C. Honig, C. B. Krishnamurthy, Ignacio Borge-Durán, Mariusz Tasior, D. Gryko, I. Grinberg, L. Elbaz. J. Phys. Chem. C 2019, 123, 26351−26357.
19. F.Jinchang, Q.Kun, Hong Chen, Z.Weitao, Xiaoqiang CuiJournal of Colloid and Interface Science 2017 490 190–196.
20. Hammer B, JK Norskov. Nature , 1995 376: 238-240.
21. https://sites.google.com/site/orrcatalysiswithptbasedcsnps/home/d-band-theory.
22. Kun Jiang, H.X. Zhang, S. Zou, W. Cai. Phys.Chem.Chem.Phys.,2014, 16, 20360.
23. J. R. De Lile , S. Y. Lee , H. J. Kim , C. Pak and S. G. Lee , New J. Chem., 2019, 43 , 8195 —8203.
24. S. Back, Yousung Jung. ChemCatChem 2017, 9, 3173 – 3179.
25. José L Fernández, D. Walsh, A. Bard. J. AM. CHEM. SOC. 2005, 127, 357-365.
26. Wei, Y.-C., Liu, C.-W., Lee, H.-W., Chung, S.-R., Lee, S.-L., Chan, T.-S., Lee, J.-F., Wang, K.-W.. International Journal of Hydrogen Energy, 2011 36 (6) , pp. 3789-3802.
27. Shao, Q., Wang, P., Huang. Adv. Funct. Mater. 2019, 29, 1806419.
28. H. Li , C. Chen , D. Yan , Y. Wang , R. Chen , Y. Zou and S. Wang , J. Mater. Chem. A, 2019, 7 , 23432 —23450.
29. Kim, M., Lee, C., Ko, S.M., Nam, J.-M. Journal of Solid State Chemistry, 2019 270, pp. 295-303.
30. G. Bampos, L. Sygellou, S. Bebelis. Catal. Today, 2020, 355 pp. 685-697.
31. Y. Zhuang , J.-P. Chou , P.-Y. Liu , T.-Y. Chen , J. Kai , A. Hu and H.-Y. T. Chen , J. Mater. Chem. A, 2018, 6 , 23326 —23335.
32. Li, X.; Li, X.; Liu, C.; Huang, H.; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.; Yang, J.; Zeng, J. Nano Lett. 2020, 20, 1403– 1409.
33. Bhalothia, D.; Krishnia, L.; Yang, S.-S.; Yan, C.; Hsiung, W.-H.; Wang, K.-W.; Chen, T.-Y. Appl. Sci. 2020, 10, 7708.
34. Y. Zhuang , J.-P. Chou , H.-Y. Tiffany Chen , Y.-Y. Hsu , C.-W. Hu , A. Hu and T.-Y. Chen , Sustainable Energy Fuels, 2018, 2 , 946 —957.
35. S. Dai, J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan and. T.-Y. Chen. Nat. Commun., 2019, 10, 440.
36. Liu Y, Xu C. ChemSusChem. 2013 Jan;6(1):78-84.
37. J. Li , H. Zhou , H. Zhuo , Z. Wei , G. Zhuang , X. Zhong , S. Deng , X. Li and J. Wang. J. Mater. Chem. A, 2018, 6 , 2264 —2272.
38. Yu, J., Liu, Z., Zhai, L., Huang, T., Han, J. International Journal of Hydrogen Energy, 2016 41 (5), pp. 3436-3445.
39. http://www.nscric.nthu.edu.tw/p/404-1186-122226.php?Lang=zh-tw.
40. https://zi.media/@yidianzixun/post/Rf3awp.
41. https://www.narlabs.org.tw/tw/xcscience/contxsmsid=0I148638629329404252&sid=0K107352975420455604.
42. http://47.95.49.117/newsitem/278489750.
43. https://www.nsrrc.org.tw/chinese/index.aspxaspxerrorpath=/Chinese/experiment.aspx#3.
44. https://zhuanlan.zhihu.com/p/78090546.
45. https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0028.
46. https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy.
47. https://www.wikiwand.com/en/X-ray_absorption_near_edge_structure.
48. https://www.gushiciku.cn/dc_tw/105943467.
49. https://www.nsrrc.org.tw/chinese/index.aspxaspxerrorpath=/Chinese/experiment.aspx#3.
50. http://www.aandb.com.tw/.
51. http://nscric.site.nthu.edu.tw/p/404-1186-122439.php?Lang=zh-tw.
52. https://en.wikipedia.org/wiki/Cyclic_voltammetry.
53. Prass, S., St-Pierre, J., Klingele, M., Friedrich, K. A., & Zamel, N. Electrocatalysis, 2021 12(1), 45-55.
54. Mais, Laura. 2015. Electrodeposition of Nb, Ta, Zr and Cu from Ionic Liquid for Nanocomposites Preparation..
55. D. Bhalothia , C.-Y. Lin , C. Yan , Y.-T. Yang and T.-Y. Chen . Sustainable Energy Fuels, 2019, 3 , 1668 —1681.
56. K. Shinozaki, J. Zack, R. Richards, B. Pivovar, S. Kocha. JECS, 2015, 162, pp. 1144-1158.
57. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang,
X. F. Duan, T. Mueller, Y. Huang. Science, 2015, 348, 1230–1234.
58. D. Bhalothia , D.-L. Tsai , S.-P. Wang , C. Yan , T.-S. Chan , K.-W. Wang , T.-Y. Chen and P.-C. Chen . J. Alloys Compd., 2020, 844 , 156160.
59. H. Zhang , B. Chen and J. F. Banfield. Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78 , 214106.
60. I. L. Chen , Y. C. Wei , K. T. Lu , T. Y. Chen , C. C. Hu and J. M. Chen . Nanoscale, 2015, 7 , 15450 —15461.
61. Chen, L. X.; Rajh, T.; Wang, Z.; Thurnauer, M. C. J. Phys. Chem. B 1997, 101, 10688– 10697.
62. Z.Y. Wu, J. Zhang, K. Ibrahim, D.C. Xian, G. Li, Y. Tao, T.D. Hu, S. Bellucci, A. Marcelli, Q.H. Zhang, L. Gao, Z.Z. Chen. Appl. Phys. Lett., 2002 , 80 , pp. 2973-2975.
63. otestein, J. M.; Andrini, L. R.; Kalchenko, V. I.; Requejo, F. G.; Katz, A.; Iglesia, E. J. Am. Chem. Soc. 2007, 129, 1122– 1131.
64. Wu, Q.; Zheng, Q.; van de Krol, R. J.Phys. Chem. C, 2012, 116, 7219– 7226.
65. Hanley, T.L., Luca, V., Pickering, I., Howe, R.F. Journal of Physical Chemistry B, 2002, 106, 6, pp. 1153-1160.
66. Waychunas, Glenn A. American Mineralogist, 1987, 72.1-2 : 89-101.
67. Rossi, T.C.; Grolimund, D.; Nachtegaal, M.; Cannelli, O.; Mancini, G.F.; Bacellar, C.; Kinsche, D.; Rouxel, J.R.; Ohannessian, N.; Pergolesi, D.; et al. Phys. Rev. B Condens. Matter Mater. Phys. 2019, 100, 245207.
68. Oliveira, M. M.; Schnitzler, D. C.; Zarbin, A. J. G. Chem. Mater. 2003, 15, 1903– 1909
69. Kuo H.-W., Lin C.-J., Do H.-Y., Wu R.-Y., Tseng C.-M., Kumar K., Dong C.-L., Chen C.-L. Applied Surface Science, 2020. 502 , art. no. 144297.
70. Benjamin B Rich, Yael Etinger-Geller, G. Ciatto, A. Katsman, B. Pokroy. Physical Chemistry Chemical Physics, 2021, 23, 11, 6600-6612.
71. M. Biesinger, L. Lau, A. Gerson, R. S. C. Smart. Applied Surface Science,2010, 257, 3 , pp. 887-898.
72. Santiago, R. S., Silva, L. C. D., Origo, F. D., Stegemann, C., Graff, I. L., Delatorre, R. G., & Duarte, D. A. Thin Solid Films, 2020, 700: 137917.
73. Henderson, M. A. Langmuir, 1996, 12, 5093– 5098.
74. Y. Wang, X. Wang, C.M. Li. Appl. Catal. B Environ., 2010, 99 pp. 229-234.
75. Y. Zhao, G. Wang, L. Xiao, J. Lu, L. Zhuang. ChemistrySelect ,2020, 5, 7803.
76. D Bhalothia, C. Y. Lin, C. Yan, Y.T. Yang, T.Y. Chen. ACS Omega, 2019, 4, 971−982.
77. Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Nat. Catal. 2018, 1, 711– 719.
78. Z.X. Liu, Z.P. Li, H.Y. Qin, B.H. Liu. J. Power Sources, 2011, 196, pp. 4972-4979.