研究生: |
王仁杰 Jen-Chieh Wang |
---|---|
論文名稱: |
氧化亞鐵硫桿菌代謝溶液中之雷射輔助金屬銅沉積 Laser-Assisted Copper Deposition from Thiobacillus ferrooxidans (T.f.) Metabolite |
指導教授: |
賀陳弘
Hong Hocheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 雷射 、金屬沉積 、無光罩製程 、沉積 、氧化亞鐵硫桿菌代謝溶液 |
外文關鍵詞: | laser, metal deposition, maskless fabrication, deposition, T.f., metabolite |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大部分的微結構是經由光微影技術所製造而成,其製程需經過一道一道的曝光顯影蝕刻過程,其中的曝光步驟便需要藉由事先製作好的光罩來定義所需的圖案。為了節省製程的時間及成本,無光罩技術應運而生。所需要的結構可藉由雷射在試片上掃描過後而取得,亦可用來修補損壞的結構。本研究更進一步的探尋於氧化亞鐵硫桿菌代謝溶液中之雷射輔助金屬銅沉積的可行性。藉由長工作距離的物鏡將1064 奈米紅外光波長的釹-釔石榴石雷射聚焦於銅試片上,沉積出所需之結構,此以雷射輔助銅沉積的過程為一光熱反應。此一創新的金屬微結構成型技術結合氧化亞鐵硫桿菌代謝溶液蝕刻及雷射引導沉積兩種特性,原先被氧化亞鐵硫桿菌代謝溶液所蝕刻而產生的二價銅離子在其雷射所走過的軌跡上再度被還原成金屬銅。實驗後發現金屬銅沉積量〈線寬,厚度〉與雷射功率,掃描速度的倒數及掃描重複次數間存在著正相關性。
[1] M. L. Griffith, D. M. Keicher, C. L. Atwood, J. A. Romero, J. E. Smugeresky, L. D. Harwell, D. L. Greene, “Free form fabrication of metallic components using laser engineered net shaping (LENS),” Proceedings of the Solid Freeform Fabrication Symposium, August 12-14, (1996) Austin, TX, p. 125.
[2] J. J. Beaman and C. R. Deckard, “Selective laser sintering with assisted power handling,” US patent No. 4938816, June 1990.
[3] P. F Jacobs, “Rapid Prototyping and Manufacturing: Fundamentals of StereoLithography,” Society of Manufacturing Engineers, Dearborn, MI, 1992.
[4] S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52 (11), (1981) pp. 6501-6505.
[5] D. B□uerle, “Laser Processing and Chemistry,” Springer, Heidelberg, 1996.
[6] M. Wehner, F. Legewie, B. Theisen, E. Beyer, “Direct writing of gold and copper lines from solutions,” Appl. Surf. Sci., 106, (1996) pp. 406-411.
[7] K. Kord□s, K. Bali, S. Lepp□vuori, A. Uusim□ki, L. N□nai, “ Laser direct writing of copper on polyimide surfaces from solution, “ Appl. Surf. Sci. , 154-155, (2000) pp. 399-404.
[8] K. Kord□s, L. N□nai, G. Galb□cs, A. Uusim□ki, S. Lepp□vuori, K. Bali, “ Reaction dynamics of CW Ar+ laser induced copper direct writing from liquid electrolyte on polymide substrates, “ Appl. Surf. Sci. , 158, (2000) pp. 127-133.
[9] K. Kord□s, J. B□k□si, R. Vajitai, L. N□nai, S. Lepp□vuori, A. Uusim□ki, K. Bali, Thomas F. George, G. Galb□cs, F. Ign□cz, P. Moilanen, “ Laser-assisted metal deposition from liquid-phase precursors on polymers, ” Appl. Surf. Sci. , 172, (2001) pp. 178-189.
[10] X. C. Wang, H. Y. Zheng, G. C. Lim, “ Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser, ” Appl. Surf. Sci., 200, (2002) pp. 165-171.
[11] L. Mini, C. Giaconia, C. Arnone, “ Copper patterning on dielectrics by laser writing in liquid solution, ” Appl. Phys. Lett., 64 (25), (1994) pp. 3404-3406.
[12] Zs. Geretovszky, L. Kelemen, K. Bali, T. Sz□r□nyi, ” Kinetic model for scanning laser-induced deposition from the liquid phase, ” Appl. Surf. Sci., 86, (1995) pp. 494-499.
[13] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-assisted metal deposition from CuSO4-based electrolyte solution, “ Laser Phys. Lett., 4, No.2, (2007) pp. 163-167.
[14] A. A. Manshina, A. V. Povolotskiy, T. Yu. Ivanova, A. V. Kurochkin, Yu. S. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-induced copper deposition on the surface of an oxide glass from an electrolyte solution, “ Glass Physics and Chemistry, 33, No.3, (2007) pp. 209-213.
[15] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ CuCl2-based liquid electrolytr precursor for laser-induced metal deposition, “ Laser Phys. Lett., 4, No.3, (2007) pp. 242-246.
[16] R. F. Karlicek, V. M. Donnelly, G. J. Collins, “Laser-induced metal deposition on InP,” J. Appl. Phys., 53 (2), (1982) pp.1084-1090.
[17] L. N□nai, I. Hevesi, F. V. Bunkin, B. S. Luk’yanchuk, M. R. Brook, G. A. Shafeev, Daniel A. Jelski, Z. C. Wu, Thomas F. George, “ Laser-induced metal deposition on semiconductors from liquid electrolytes,” Appl. Phys. Lett., 54 (8), (1989) pp. 736-738.