研究生: |
甘迪潘 GANDEEPAN |
---|---|
論文名稱: |
Palladium-Catalyzed C-H Bond Functionalization and Iron-Catalyzed Addition and Annulation Reactions 鈀金屬催化碳—氫鍵活化及鐵金屬催化加成及環化反應之研究 |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
劉瑞雄
Liu, Rai-Shung 蔡易州 Tsai, Yi-Chou 劉緒宗 Liu, Shiuh-Tzung 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 375 |
中文關鍵詞: | 鈀 、鐵 、碳—氫鍵活化 、加成反應 、環化反應 |
外文關鍵詞: | PALLADIUM, IRON, C-H ACTIVATION, ADDITION REACTION, ANNULATION REACTION |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Transition metal-catalyzed direct transformations of inactivated CH bonds into various functional groups have emerged as a powerful method in organic synthesis. This methodology is fascinating for the chemical and pharmaceutical industries, because it can significantly simplify and shorten the synthetic route and also allow the utilization of less expensive, more readily available, and environmentally benign starting materials. Use of palladium complexes for CH bond functionalization to deduce new synthetic procedures which are more environmentally benign, atom efficient and economically viable than the existing methods was the motivation behind to the current works. With this regards, this thesis describes five new transformations (Chapter 1-5) for CC bond formation through CH bond activation using palladium catalyst.
Iron is 4th most abundant metal on earth and has been increasingly explored in modern catalysis to discover its unique and novel reactivity towards carbon–carbon and carbon–heteroatom bond formation. Owing to its inexpensive and environmentally friendly characteristics, considerable effort has been directed towards iron catalysis and as a result a series of novel iron-catalyzed organic transformations have been developed. Use of such low-cost and non-toxic iron complexes as catalysts in new CC and and Cheteroatom bond formation is highly desirable. With this concern, we also developed three new methods to synthesize -chlorovinyl ketones, ,-alkynyl ketones and 2,4-substituted Quinolines using iron-catalyzed reaction system (Chapter 6-7).
Chapter 1 decribes the synthesis of phenanthrone derivatives from sec-alkyl aryl ketones with aryl iodides using palladium catalyst. The catalytic reaction appears to proceed via a dual CH activation and enolate cyclization.
Chapter 2 depicts the synthesis of fluorenones by Pd-catalyzed oxidative cyclization of diaryl ketones. This methodology had advantages using readily available diaryl ketone starting materials to produce variety of fluorenones. This simple method offers an alternative and complimentary way to other fluorenone synthesis.
Chapter 3 demonstrates an effective palladium-catalyzed carboncarbon double bond assisted selective ortho CH olefination of arenes at room temperature using dioxygen as the oxidant. The reaction appears to be the first example employing an allylic alkenyl double bond as a directing group for CH activation.
Chapter 4 deals about the synthesis of substituted naphthalenes via palladium catalyzed CH activation and annulation of allyl arenes with alkynes. This reaction proceed through the -coordination of Pd(II) to the allylic carboncarbon double bond and ortho selective CH bond activation. The reaction adds an advantage to use environmentally friendly oxygen as a terminal oxidant.
Chapter 5 showed an efficient and convenient method for the synthesis of symmetrically substituted 1,4-diaryl-1,3-butadienes by palladium-catalyzed oxidative dimerization of vinyl arenes. The reaction proceeds with broad substrate scope and excellent stereo selectivity.
Chapter 6 elaborates the development of a very mild and convenient iron-catalyzed addition of acid chlorides to terminal alkynes to give the corresponding -chloroalkenyl ketones in very good yields with excellent regio- and stereoselectivity. The present iron-catalyzed addition reaction is successfully extended to alkynylsilanes to give alkynyl ketones.
Chapter 7 reveals the synthesis of quinoline derivatives from iron catalyzed tandem reaction of aldimines with styrenes. This process can provide diverse range of quinoline derivatives in good to excellent yields from simple starting materials. The method has advantages of broad substrate scope, simple operation, mild reaction condition, and high effectiveness from non toxic and inexpensive iron catalyst. This reaction also extended to one-pot tandem three-component reaction of aldehydes, styrenes and amines to synthesis of quinoline derivatives.
1. a) Negishi, E.; De Meijere, A. Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, 2002. b) De Meijere A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, Second Completely Revised and Enlarged Edition, Wiley-VCH, 2004. c) Ackermann, L. Modern Arylation Methods, Wiley-VCH, 2009. d) Corbet, J.-P.; Mignani, G. Chem. Rev., 2006, 106, 2651. e) Jana, R.; Pathak T. P.; Sigman, M. S. Chem. Rev., 2011, 111, 1417. f) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem., 2002, 219, 131. g) Hartwig, J. F. Angew. Chem., Int. Ed., 1998, 37, 2046. (h) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed., 2009, 48, 2656.
2. Godula, K.; Sames. D. Science. 2006, 312, 67.
3. a) Labinger, J. A.; Bercaw, J. E. Nature, 2002, 417, 507. b) Ackermann, L. Chem. Rev., 2011, 111, 1315.
4. a) Trost, B. M. Science, 1991, 254, 1471. b) Trost. B. M. Angew. Chem., Int. Ed., 1995, 34, 259.
5. a) Alberico, D.; Scott, M. E.; Lautens. M. Chem Rev, 2007, 107, 174. b) Lyons, T. W.; Sanford, M. S. Chem. Rev, 2010, 110, 1147.
6. a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. b) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
7. a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330. b) Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657. c) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. d) Ackermann, L. Org. Lett. 2005, 7, 3123. e) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579. f) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. g) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032. h) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. i) Pozgan, F.; Dixneuf, P. H. Adv. Synth. Catal. 2009, 351, 1737. j) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2010, 49, 6629.
8. a) Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113. b) H. –M. Guo, L. –L. Jiang, H. –Y. Niu, W. –H. Rao, L. Liang, R. Z. Mao, D-. Y. Li, G. –R. Qu. Org. Lett. 2011, 13, 2008. c) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. d) Ackermann, L.; Born, R.; Vicente, R. ChemSusChem 2009, 546. e) Ackermann, L.; Novák, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. Synthesis 2010, 2245.
9. a) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046. b) Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211.
10. a) Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41, 2655. b) D. Shabasho, O. Daugulis. Org. Lett. 2006, 8, 4947. c) M. Wasa, B. T. Worrell, J. –Q. Yu. Angew. Chem. Int. Ed. 2010, 49, 1275. d) F. Péron, C. Fossey, T. Cailly, F. Fabis. Org. Lett. 2012, 14, 1827.
11. H. A. Chiong, Q. –N. Pham, O. Daugulis. J. Am. Chem. Soc. 2007, 129, 9879.
12. a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740. b) Kawamura, Y.; Satoh, T.; Miura, M.; Nomura, M. Chem. Lett. 1999, 961. c) Kawamura, Y.; Satoh, T.; Miura, M.; Nomura, M. Chem. Lett. 1998, 931. d) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112. e) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669. f) Oi, S.; Watanabe, S.-I.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665.
13. a) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407. b) Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 5236. c) Terao, Y.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2004, 69, 6942. d) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004, 126, 8658.
14. a) Satoh, T.; Kametani, Y.; Terao, Y.; Miura, M.; Nomura, M. Tetrahedron Lett. 1999, 40, 5345. b) Satoh, T.; Miura, M.; Nomura, M. J. Organomet. Chem. 2002, 653, 151. c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698. d) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936.
15. a) Gürbüz, N.; Özdemir, I.; Çetinkaya, B. Tetrahedron Lett. 2005, 46, 2273. b) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2001, 57, 5967.
16. a) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2008, 47, 9462. b) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Chem. Eur.J. 2010, 16, 1436.
17. a) Oi, S.; Ogino, Y.; Fukita, S.; Inoue, Y. Org. Lett. 2002, 4, 1783. b) Ackermann, L. Org. Lett. 2005, 7, 3123. c) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229. d) Desai, L. V.; Hull, L. K.; Sanford, S. M. J. Am. Chem. Soc. 2004, 126, 9542. e) Desai, V.; Malik, H. A.; Sanford, S. M. Org. Lett. 2006, 8, 1141. f) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. g) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc 2008, 130, 3304.
18. a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. b) Lyons, T. W. Sanford, M. S. Chem. Rev. 2010, 110, 1147. c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.
19. a) Lebrasseur, N.; Larrosa, I.; J. Am. Chem. Soc. 2008, 130, 2926. b) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. c) Chen, X.; Googhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634. d) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.