簡易檢索 / 詳目顯示

研究生: 羅國軒
Luo, Guo-Xuan
論文名稱: 橫向擴散金氧半場效電晶體介電質調變之設計
The Design of Laterally Diffused Metal Oxide Semiconductor Field Effect Transistor with Dielectric Modulation
指導教授: 龔正
Gong, Jeng
黃智方
Huang, Chih-Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 橫向擴散金氧半場效電晶體介電質調變深溝絕緣高壓元件導通電阻崩潰電壓
外文關鍵詞: LDMOSFET, Dielectric Modulation, Deep Trench Isolation, High-voltage device, On-state resistance, Breakdown voltage
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了系統晶片化設計(System On Chip),高壓元件必須由傳統的垂直結構,改變為平面橫向式的設計,在本論文中,主要是以80V橫向式擴散金氧半電晶體,利用製程與電性模擬軟體進行元件的二維及三維的結構及電性模擬,探討深溝絕緣(Deep Trench Isolation, DTI)製程與高壓元件的漂移區結合時,對元件性能的影響,並最佳化設計。


    In order to realize the goal of system on chip with silicon based process, the traditional vertical high-voltage device must be altered to lateral design. In this thesis, I focus on the design of 80 volt high-voltage LDMOS device by using Technology Computer-Aided Design tool for two- dimension and three- dimension simulation on electrical properties. And analyzed the device performance of the combined deep trench isolation process and the drift region in high voltage applications. The design is optimized and the simulation results are discussed.

    摘要…3 Abstract…4 目錄…5 第一章 前言…7 第二章 高壓元件發展…8 2.1高壓元件起源…8 2.2 高壓元件結構…8 2.2.1垂直功率元件…8 2.2.2 橫向功率元件…9 2.3高壓元件物理特性…9 2.3.1 崩潰機製…9 2.3.2 場板(Field plate) …11 2.3.3 浮接場環(Floating field ring) …11 2.3.4 溝槽(Trench) …11 2.3.5 RESURF(REduce SURface Field) …12 2.3.6 REBULF(REduced BULk Field) …12 第三章 DM元件最佳化模擬…20 3.1 DM幾何形狀…20 3.2 DM最佳化設計…21 第四章 高壓元件設計…34 4.1 80V高壓元件…34 4.1.1 80V高壓元件設計…34 4.1.2 P型基極與漂移區設計…35 4.1.3 DM強化高壓元件…35 4.2 800V高壓元件…37 4.2.1 800V高壓元件設計…38 4.2.2 N型深埋層…38 4.2.3 P型基極與漂移區設計…38 4.2.4 DM強化高壓元件 …39 4.3 性能指標…40 4.3.1崩潰電壓與導通電阻萃取…40 4.3.2臨限電壓…41 4.3.3 高壓元件性能…42 第五章 討論與展望…58 參考資料…60

    [1] B.JAYANT BALIGA, ”POWER SEMICONDUCTOR DEVICE,”PWS PUBLISHING COMPANY, 1996
    [2] J. Ramos and M. Steyaert, “STI/LOCOS compatible LDMOS structure in standard CMOS,” ELECTRONICS LETTERS 18th September 2003 Vol. 39 No. 19
    [3] A. Nezar and C. A. T. Salama, Fellow, IEEE, “Breakdown Voltage in LDMOS Transistors Using Intemal Field Rings,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 38, NO. 7. JULY 1991
    [4] Zia Hossain, Mohamed Imam, Joe Fulton, M a s h Tanaka, “Double-resurf 700V N-channel LDMOS with Best-in-class On-resistance,” 0-7803-731 &9/02/2002 IEEE
    [5] Zia Hossain, “Determination of Manufacturing Resurf Process Window for a Robust 700V Double Resurf LDMOS Transistor,” Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC's May 18-22, 2008 Oralando, FL
    [6] C. T. Huang1,2, Bing-Yue Tsui1, Hsu-Ju Liu1, and Geeng-Lih Lin3, “The Impact of High-voltage Drift N-well and Shallow Trench Isolation Layouts on Electrical Characteristics of LDMOSFETs,” 1-4244-0637-4/07/2007 IEEE
    [7] Taylor Eflantd, Peter Mei, Dan Mosher, Bob Todd, “Self-Aligned RESURF To LOCOS Region LDMOS Characterization shows Excellent Rsp vs BV Performance,” 0-7803-3 106-0/96/1996 IEEE
    [8] Shinichiro Yanagi, H.Kimura, T.Nitta, T.Kuroi, K.Hatasako and S.Maegawa, “0.15μm BiC-DMOS technology with novel Stepped-STI N-channel LDMOS,” 978-1-4244-4673-5709/2009 IEEE.
    [9] J.A. Appels and H.M.J. Vaes, ” HIGH VOLTAGE THIN LAYER DEVICES (RESURF DEVICES),” CH1504-0/79/0000-0238/1979 IEEE
    [10] Baoxing Duan, Bo Zhang, Zhaoji Li, “A New Reduced Bulk Field (REBULF) High-Voltage LDMOS with N+-Floating Layer,” 0-7803-9584-0/06/2006 IEEE.
    [11] Jianbing Cheng, Bo Zhang and Zhaoji Li, “1000 V Breakdown Voltage LDMOS with Thin Drift Layer,” 978-1-4244-2064-3/08/2008 IEEE
    [12] SYNOPSYS, “Taurus Medici User Guide,” Version Y-2006.06, June 2006
    [13] SYNOPSYS, “TCAD Sentaurus Training”
    [14] SYNOPSYS, “TCAD Sentaurus,” Version A-2008.09
    [15] SYNOPSYS, ” Taurus TSUPREM-4 Taurus Process Reference Manual,” Version X-2005.10, October 2005
    [16] Martin Knaipp, Georg R□hrer, Rainer Minixhofer, and Ehrenfried Seebacher, “Investigations on the High Current Behavior of Lateral Diffused High-Voltage Transistors,” 0018-9383/04/2004 IEEE
    [17] Namkyu Park, Jaehan Cha, Kyungho Lee, Haeung Jeon, Hyungsuk Choi, Juho Kim, Sungoo Kim, Inseok Oh, Eungryul Park, Jinyoung Chae, Hyunggeun Kang, Intaek Oh, HAN SUB YOON+, “aBCD18 - an advanced 0.18um BCD Technology for PMIC Application,” 978-1-4244-4673-5/09/2009 IEEE.
    [18] H. Kitahara, T. Tsukihara, M. Sakai, J. Morioka*, K. Deguchi*, K. Yonemura*, T. Kikuchi**, S. Onoue**, K. Shirai*, K. Watanabe* and K. Kimura*., “A Deep Trench Isolation integrated in a 0.13um BiCD process technology for analog power ICs,” 978-1-4244-4896-8/05/2008 IEEE
    [19] B. Desoete, A. De Smet, and P. Moens, “A Multiple Deep Trench Isolation Structure with Voltage Divider Biasing,” Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs May 27-30, 2007 Jeju, Korea
    [20] YUAN TAUR TAK H.NING, ”Fundamentals of MODERN VLSI DEVICES,”CAMBRIDGE UNIVERSITY PRESS, 1998
    [21] HU ZHI-MIN, “The optimal design of 700V LDMOSFET,” NTHU-2007.6
    [22] T. Sakuda, N, Sadachika, Y. Oritsuki, M. Yokomichi, M. Miyake, T. Kajiwara, H. Kikuchihara U. Feldmann, H. J. Mattausch and M. Miura-Mattausch, ”Effect of Impact-Ionization-Generated Holes on the Breakdown Mechanism in LDMOS Devices,” 9781-4244-3949-2/09/2009 IEEE

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE