簡易檢索 / 詳目顯示

研究生: 張佑仁
Chang, Yu-Jen
論文名稱: 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
pH/Thermo-Responsive Cross-Linked Copolymer/Drug Complex Micelles for Intracellular Drug Delivery
指導教授: 邱信程
Chiu, Hsin-Cheng
口試委員: 張建文
Chang, Chien-Wen
許源宏
Hsu, Yuan-Hung
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 63
中文關鍵詞: 酸鹼/溫度應答交聯式複合奈米微胞藥物控制釋放細胞毒性
外文關鍵詞: pH/thermal response, Cross-linked micelles, Drug delivery, Cytotoxicity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用具有酸鹼及溫度應答性的接枝共聚合高分子poly(acrylic acid-co-methacryloylethyl acrylate)-g-poly(N-isopropylacrylamide/ethylene glycol) (P(AAc-co-MEA)-g-PNIPAAm/PEG)與化療藥物doxorubicin (DOX)進行複合,經升溫及交聯等程序後,製備出載藥高分子奈米微胞,並評估其應用於癌症治療的可行性。其製備流程是,先將接枝共聚合高分子於pH 7.4的環境下與抗癌藥物DOX進行複合,接著升高溶液溫度至45 oC,使PNIPAAm產生的疏水性,並與AAc/DOX複合物一同構建複合奈米微胞的疏水核心。最後再加入起始劑(Ammonium peroxydisulfate, APS),使高分子主鏈上MEA單元彼此聚合交聯複合奈米微胞。交聯後的複合奈米微胞粒徑約為53.3 ± 1.3 nm,並且具有良好的穩定性。其藥物的包覆效率及藥物裝載率分別可達80 wt%及奈米微胞總重的40 wt%。在體外模擬藥物釋放的測試中,載藥奈米微胞於藥物釋放上,展現出酸鹼應答的特性。其於72小時內的累積藥物釋放率, 於pH 7.4、6.0及4.7分別可達到17、32、50%。有趣的是,一但提升載藥奈米微胞所處環境溫度至45 oC,載藥奈米粒子的藥物釋放率即會顯著提升,於pH 4.7可達到68 %。此一特性,將有助於結合高能聚焦式超音波,對局部組織進行升溫,促進載藥奈米微胞進行藥物釋放。將載藥奈米微胞與癌細胞(HeLa cells)共同培養,並對此癌細胞進行細胞毒性分析。其結果顯示,複合奈米微胞載體本身並不具有明顯細胞毒性。然而,一但載藥奈米微胞被癌細胞吞噬而進入細胞內部,將能有效釋放其所載藥物,並且對癌細胞產生毒性。這證明了此交聯式複合奈米微胞於藥物傳遞系統中做為藥物載體的可行性。


    In this study, the complex micelles were formed by electrostatic interaction between hydrophilic anticancer drug doxorubicin (DOX) and graft copolymers. The graft copolymers comprising acrylic acid and 2-methacryloylethyl acrylate (MEA) units as backbone and both poly(N-isopropylacrylamide) (PNIPAAm) and poly(ethylene glycol) (mPEG) as the grafts were synthesized. These micelles contain high stability by interchains cross-linking. After cross-linking, the particle size of polymeric complex micelles were ca. 53 nm and could be achieved high drug encapsulation efficiency (ca. 80 wt%) and loading content (ca. 40 wt%). In pH-triggered release, DOX were obviously released at pH 4.7 via the protonation of AAc residues on the copolymers, however, DOX would be contained in the micelles at pH 7.4. Besides, the released profile of these micelles was also thermal response. Because of the PNIPAAm on the copolymers, the released profile of micelles would be enhanced when the surrounding temperature was raised. In vitro cytotoxicity tests demonstrated the copolymers used in polymeric complex micelles were nontoxic while DOX-loaded polymeric complex micelles had well toxicity against Hela cells. Moreover, flow cytometry and confocal microscopy also showed the cellular uptake of polymeric complex micelles by Hela cells. These results indicate that these polymeric complex micelles could be provided with pH/thermo-triggered release profile and have highly potential in drug delivery system.

    目錄 摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3研究目標 4 第二章 文獻回顧 5 2-1 微脂粒 5 2-2高分子液胞 7 2-3 兩性高分子親水鏈段重量分率(F)對於自組裝型態之影響 9 2-4 高分子微胞 10 2-5 應答型高分子奈米粒子 12 2-6 複合高分子奈米粒子 14 2-7 應答型複合高分子奈米粒子 16 2-8 溫度/酸鹼應答型接枝高分子POLY(AAC-CO-MEA)-G- PNIPAAM/MPEG 17 第三章 實驗材料與實驗方法 20 3-1 實驗藥品 20 3-2 實驗儀器及設備 22 3-3 高分子合成與鑑定 23 3-3-1 NAS之合成 23 3-3-2 Poly(NAS)之合成 23 3-3-3 PNIPAAm-NH2之合成 24 3-3-4 mPEG-Cl之改質 25 3-3-5 mPEG-N3之合成 25 3-3-6 mPEG-NH2之合成 26 3-3-7 Poly(NAS-co-MEA)之合成 26 3-3-8 Poly(AAc-co-MEA)-g-PNIPAAm/mPEG之合成 27 3-3-9共聚合接枝高分子的組成鑑定 28 3-4 複合高分子奈米粒子之製備與特性分析 28 3-4-1 複合奈米粒子之製備 28 3-4-2 複合高分子奈米粒子之物性分析 29 3-4-3 穿透式電子顯微鏡(TEM)樣品之製備 30 3-4-4 複合高分子奈米粒子於核磁共振儀(1H-NMR)樣品之製備 30 3-4-5 載藥複合高分子奈米粒子的藥物裝載定量 31 3-4-6 體外藥物釋放模擬實驗 31 3-5 細胞實驗 32 3-5-1 細胞株 32 3-5-2 細胞培養與細胞繼代 32 3-5-3 細胞計數 33 3-5-4 細胞毒性測試 33 3-5-5複合奈米粒子之細胞吞噬 34 四、結果與討論 35 4-1 共聚接枝高分子之組成鑑定 35 4-2 共聚接枝高分子於不同PH值的解離程度 37 4-3 高分子/DOX複合微胞形成之探討 38 4-4 熱處理對複合奈米微胞結構變化之探討 40 4-5 奈米複合微胞之特性分析 43 4-6複合奈米微胞結構之探討 46 4-7 奈米複合微胞之藥物包覆 47 4-8 奈米複合微胞之酸鹼/溫度應答之特性分析 48 4-9 體外藥物釋放分析 50 4-10 細胞吞噬與胞內藥物釋放之探討 54 4-11 交聯式奈米複合粒子之細胞毒性分析 57 第五章 結論 59 參考文獻 61

    [1] Bangham, A. D.; Standish, M. M.; Watkins, J. C. Mol. Biol. 1965, 13,
    238-252.
    [2] Pattnaik, P.; Ray, T. Pharam. Tech. Europe, 22, 6-12.
    [3] New RRC, Liposomes : a practical approach 1990, Oxfold Univ. Press.
    [4] Ahmed, F.; Discher, D. E. J. Control. Rel. 2004, 96, 37-53.
    [5] Zhang, L.; Eisenberg, A. Science 1995, 268, 1728-1731.
    [6] Holder, S. J.; Hiorns, R. C.; Sommerdijk, N. A. J. M.; Williams, S. J.; Jones, R.
    G.; Nolte, R. J. M. Chem. Commun. 1998, 14, 1445-1446.
    [7] Battaglia, G.; Ryan, A. J. J. Phys. Chem. B 2006, 110, 10272-10279.
    [8] Li, Y.; Lokitz, B. S.; McCormick, C. L. Angew. Chem. Int. Ed. 2006, 45,
    5792-5795.
    [9] Chio, H. J.; Montemagno, C. D. Nano lett. 2005, 5, 2538-2542.
    [10] Ringsdorf, H.; Schlarb, B.; Venzmer, J. Angew. Chem. Int. Ed. 1988, 27,
    113-158.
    [11] Meier, W.; Chem. Soc. Rev. 2000, 29, 295-303.
    [12] Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Baters, F. S.; Discher, D.
    E.; Hammer, D. A. Science 1999, 284, 1143-1146.
    [13] Dan, P.; Jeffrey, M. K.; Seungpyo, H.; Omid, C. F.; Rimona, M.; Robert, L.
    Nat. Nanotech. 2007, 2, 751-760.
    [14] Jianzhong, D.; Rachel, K. O. Soft Matter 2009, 5, 3544-3561.
    [15] Jain, S.; Bates, F. S. Science 2003, 300, 460-464.
    [16] Discher, D. E.; Eisenberg, A. Science 2002, 297, 967-973.
    [17] Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J.
    Nat. Mater. 2004, 3, 244-248.
    [18] Ahmed, F.; Pakunlu, R. I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M. L.; Minko, T.; Disher, D. E. Mol. Pharmaceutic. 2006, 3, 340-350.
    [19] Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Disher, D. E.
    J. Control. Rel. 2006, 116, 150-158.
    [20] Bader, H.; Ringsdorf, H.; Schmidt, B. Angew. Makromol. Chem. 1984, 123,
    457-485.
    [21] Meier, W. Chem. Soc. Rev. 2000, 29, 295-303.
    [22] Lavasanifar, A.; Samuel, J.; Kwon, G. S. Adv. Drug Del. Rev. 2002, 54,
    169-190.
    [23] Owen, R. L.; Strasters, J. K.; Breyer, E. D. Electrophoresis, 2005, 26,
    735-751.
    [24] Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; Hest, J. C. M. Adv.
    Mater. 2009, 21, 2787-2791.
    [25] Hidetoshi, A.; Yuichi, O.; Tatsuro, O. Macromol. Rapid Commun. 2004, 25,
    743–747.
    [26] Read, E. S.; Armes, S. P. Chem. Commun. 2007, 3021-3035.
    [27] Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A. Adv. Drug Delivery Rev.
    2001, 53, 95-108.
    [28] Zhang, L.; Guo, R.; Yang, M.; Jiang, X.; Liu, B. Adv. Mater. 2007, 19,
    2988-2992.
    [29] Wang, H.; An, Y.; Huang, N.; Ma, R.; Li, J.; Shi, L. Macromol. Rapid
    Commun. 2008, 29, 1410-1414.
    [30] Licciardi, M.; Giammona, G.; Du, J.; Armes, S. P.; Tang, Y.; Lewis, A. L.
    Polymer 2006, 47, 2946-2953.
    [31] Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki,
    Y.; Koyama, H.; Kataoka, K. J. Am. Chem. Soc. 2008, 130,6001-6009.
    [32] Harada, A.; Kataoka, K. Macromolecules 1995, 28, 5294-5299.
    [33] Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G.; Alakhov, V. Y.
    Bioconjugate Chem. 1995, 6, 639-643.
    [34] Goldraich, M.; Schwartz, J. R.; Burns, J. L.; Talmon, Y. Colloids Surf. A
    1997, 125, 231-244.
    [35] Kakizawa, Y.; Kataoka, K. Adv. Drug Deliver. Rev. 2002, 54, 203-222.
    [36] Tian, Y.; Bromberg, L.; Lin, S. N.; Hatton, T. A.; Tam, K. C. J. Control. Rel.
    2007, 121, 137-145.
    [37] Chiang, W. H.; Hsu, Y. H.; Thang, F. F.; Chern, C. S.; Chiu, H. C. Polymer
    2010, 51, 6248-6257.
    [38] Chiu, H. C.; Lin,Y. F.; Hung, S. H. Marcomolecules 2002, 35, 5235-5242.
    [39] Smith, A. E. X.; Kirkland-York, S. E.; Savin, D. A.; McCormick, C. L.
    Macromolecules 2010, 43, 1210-1217.
    [40] Casey, J. R.; Grinstein, S.; Orlowsk, J. Nat. Rev. Mol. Cell Bio. 2010, 11,
    50-61.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE