研究生: |
麥富鈞 Fu-Chun Mai |
---|---|
論文名稱: |
等周不等式 Isoperimetric Inequalities |
指導教授: |
張樹城
Shu-Cheng Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 等周不等式 、變分法 |
外文關鍵詞: | Isoperimetric Inequalities, variation, Coarea Formula |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
假設C為平面上一條簡單封閉總長為L的區線以及G為曲線C所圍出來的區域,G的面積為A, 則我們恆有L² - 4 π A大於等於0。以此不等式為基礎,本篇文章的焦點集中在一系列的等周不等式,那些等周不等氏可以看作L² - 4 π A大於等於0在高維度空間或是更一般情形的推廣。
Let C be a simple closed curve of length L in R² and G be the domain bounded by C of the area A, we have
(*) L² - 4 π A >= 0.
The purpose of the paper focuses on inequalities which can be regarded as generalizations of (*) and inequalities which imply isoperimetric inequalities for n-dimensional manifolds in .
[Bu] Yu.D.Burago & V.A.Zalgaller (1980). Geometric inequalities. Berlin: Springer-Verlag, 1988
[C] Issac Chavel (2001) Isoperimetric inequalities, Cambridge University Press.
[Do Carmo] Do Carmo, Manfredo Differential Curves and Surfaces. Prentice Hall, New Jersey, 1976
[F] H.Federer (1969). Geometric Measure Theory. New York: Springer-Verlag
[Har] Hartman, P(1964) Geodesic Parallel Coordinate In The Large. Amer. J. Math 86, 705-727.
[O1] R.Osserman (1978) The isoperimetric inequalities. Bull.Amer.Math.Soc., vol 84, p.1182-1238.
[O2] R.Osserman (1979) Bonnesen-style isoperimetric inequalities. Amer.Math.Monthly, vol 1, p. 1-29,
[Peter Li] Peter Li Lecture Notes on Geometric Analysis. Department of Mathematics . University of California 1992; Revised - August 15, 1996