簡易檢索 / 詳目顯示

研究生: 顏邦廷
Yan, Bang-Ting
論文名稱: 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
Correlation Analyses of the Time-evolved Infrared Features of the Bacteriorhodopsin Photocycle
指導教授: 朱立岡
Chu, Li-Kang
口試委員: 陳益佳
Chen, I-Chia
李耀昌
Lee, Yao-Chang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 時間解析紅外差異吸收光譜細菌視紫質差異吸收相關性等高線圖
外文關鍵詞: time-resolved Fourier transform infrared spectroscopy, bacteriorhodopsin, difference absorbance, correlation contour
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吾人以時間解析傅氏紅外光譜儀研究細菌視紫質的光迴圈行為,並由紅外差異吸收光譜中挑選出12支特徵吸收峰,將其時間側寫以相關性方法進行分析,繪製出數個時間區段內的相關性等高線圖。藉由觀察等高線圖之中相關性反轉,分析光迴圈中的動力學行為受到驅動力影響的強度及時序,其結果與前人對光迴圈中間態演進的研究吻合。吾人希望提供一個不需要建立中間態以及整體指數擬合分析的方法,直接由吸收峰之間隨時間變化的關聯性,獲得光迴圈中質子傳遞過程的動力學資訊。


    A step-scan Fourier-transform interferometer was employed to collect the time-evolved difference infrared spectra of bacteriorhodopsin upon photoexcitation. Without a kinetics model being established or target analysis to extract the difference spectra of the intermediates in the conventional photocycle, correlation analysis of the infrared features was used to examine the evolution of the interactive strengths between the retinal Schiff base and its proton donor and acceptor in different periods of the photocycle. Following the evolution of the correlation, those correlative characteristics satisfactorily coincided with the transitions of M  N, N  O, and O  bR. We therefore have illustrated the trajectory of the driving forces on the localized molecular moieties during the photocycle: proton acceptor Asp85 (1762 and 1755 cm–1) → proton donor Asp96 (1400 cm–1) → C–C stretch of 13-cis retinal (1186 cm–1) → C14=C15 stretch of all-trans retinal (1506 cm–1) → C10–C11 stretch of all-trans retinal (1168 cm–1). The correlation analysis successfully provided the dynamic and local conformational alterations as the bR photocycle evolved, without the need to establish a kinetics model, introduce discrete intermediates, or use deconvolution algebra. Including more bands in the correlation analysis provides more thorough information of the structural alteration of the photocycle. The combination of the time-resolved infrared spectroscopic method and the correlation analysis could be a promising method of illustrating the photochemistry of photosynthetic proteins at the molecular level.

    第一章 摘要 1.1 前言 1.2 文獻回顧 1.3 實驗動機 第二章 細菌視紫質及紫膜的性質 2.1 細菌視紫質的三級結構 2.2 紫膜的組成與特性 2.3 細菌視紫質的光迴圈特性 2.4 紫膜的紅外吸收光譜特性 2.5 細菌視紫質光迴圈的紅外差異吸收光譜特性 第三章 光譜技術原理、儀器架設與數據處裡 3.1 傅立葉轉換紅外光譜儀 3.1.1 邁克森干涉儀 3.1.2 單色光干涉與多色光干涉 3.1.3 傅立葉轉換 3.1.4 截斷函數 3.1.5 削足函數 3.1.6 相位誤差與相位校正 3.1.7 連續掃描之取樣方式 3.2 步進式掃描時間解析紅外光譜技術 3.2.1 工作原理 3.2.2 跳點取樣 3.2.3 AC與DC耦合的數據擷取 3.3 實驗裝置 3.3.1 雷射激發系統 3.3.2 反應樣品槽 3.3.3 步進式掃描傅氏轉換紅外光譜儀 3.3.4 數據擷取與儀器時序控制系統 3.4 數據分析方法 3.4.1 隨時間演進之相關性及其等高線圖表示法 3.4.2 差異吸收峰之指派 第四章 結果與討論 4.1 章節簡介 4.2 結果與討論 4.2.1 A→B→C區間之比較 4.2.2 C2→D→E1區間之比較 4.2.3 E2→F區間之比較 4.2.4 bR蛋白質結構之相關性探討 4.3 分析結果整理 第五章 結論

    [1] Oesterhelt, D.; Stoeckenius, W. Proc. Nat. Acad. Sci. U. S. A. 1973, 70, 2853−2857.
    [2] Racker, E.; Stoeckenius, W. J. Bio. Chem. 1974, 249, 662−663.
    [3] Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A. Science 1998, 279, 1886−1891.
    [4] Stoeckenius, W.; Rowen, R. J. Cell Biol. 1967, 34, 365−393.
    [5] Stoeckenius, W.; Kunau, W. H. J. Cell Biol. 1968, 38, 337−357.
    [6] Oesterhelt, D.; Stoeckenius, W. Nat. New Biol. 1971, 233, 149−152.
    [7] Blaurock, A. E.; Stoeckenius, W. Nat. New Biol. 1971, 233, 152−155.
    [8] Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W. Biophys. J. 1975, 15, 955−962.
    [9] Terner, J.; Campion, A.; El-Sayed, M. A. Proc. Nat. Acad. Sci. U. S. A. 1977, 74, 5212−5216.
    [10] Eisfeld, W.; Pusch, C.; Diller, R.; Lohrmann, R.; Stockburger, M. Biochemistry 1993, 32, 7196−7215.
    [11] Olejnik, J.; Brzezinski, B.; Zundelb, G. J. Mol. Structure 1992, 271, 157−173.
    [12] Zscherp, C.; Heberle, J. J. Phys. Chem. B 1997, 101, 10542−10547.
    [13] Lórenz-Fonfría, V. A.; Kandori, H. J. Am. Chem. Soc. 2009, 131, 5891–5901.
    [14] Du, M.; and Fleming, G. R. Biophys. Chem. 1993, 48, 101–111.
    [15] Groot, H. J. M.; Harbison, G. S.; Herzfeld, J.; Griffin, R. G. Biochemistry, 1989, 28, 3346–3353.
    [16] Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G; Herzfeld, J. Proc. Nat. Acad. Sci. U. S. A. 2008, 105, 883−888.
    [17] K hlbrandt, W. Nature 2000, 406, 569−570.
    [18] Luecke, H.; Schobert, B.; Richard, H. T.; Cartailler, J. P.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899−911.
    [19] Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, K. J. Phys. Chem. B 2001, 105, 905−918.
    [20] Lanyi, J. K. Annu. Rev. Physiol. 2004, 66, 665−688.
    [21] Garczarek, F.; Gerwert, K. Nature 2006, 439, 109−112.
    [22] Lanyi, J. K. Biochim. Biophys. Acta 2006, 1757, 1012−1018.
    [23] Lanyi, J. K.; A Structural View of Proton Transport by Bacteriorhodopsin; Royal Society of Chemistry, 2005.
    [24] Henderson, H. J. Mol. Biol. 1975, 93, 123−138
    [25] Kate, M.; Kushwaha, S. C.; Sprott, G. D. Methods Enzymol. 1982, 88, 98−111.
    [26] Dracheva, S.; Bose, S.; Hendler, R. W. FEBS Lett. 1996, 382, 209−212.
    [27] Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Wang, S. Q.; Schmidt, E.; Stuart, J. A.; Seetharaman, S.; Wise, K. J. J.
    77
    Phys. Chem. B 1999, 103, 10746−10766.
    [28] Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. Nature 1999, 401, 822−826.
    [29] Brown, L. S.; Lanyi, J. K. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 1731−1734.
    [30] Royant, A.; Edman, K.; Ursby, T.; Peybay-Peyroula, E.; Landau, E. M.; Neutze, R. Nature 2000, 406, 645−648.
    [31] Balashov, S. P.; Govindjee, R.; Kono, M.; Imasheva, E.; Lukashev, E.; Ebrey, T. G.; Crouch, R. K.; Menick, D. R.; Feng, Y. Biochemistry 1993, 32, 10331−10343.
    [32] Lanyi, J. K.; J. Biol. Chem. 1997, 272, 31209−31212.
    [33] Braiman, M. S.; Bousche, O.; Rothschild, K. J. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 2388−2392.
    [34] Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R. Biochemistry 1983, 22, 6141−6148.
    [35] Morgan, J. E.; Vakkasoglu, A. S.; Gennis, R. B.; Maeda, A. Biochemistry 2007, 46, 2787−2796.
    [36] Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829−834.
    [37] Wang, J.; Link, S.; Heyes, C. D.; El-Sayed, M. A. Biophys. J. 2002, 83, 1557−1566.
    [38] Renthal, R.; Gracia, N.; Regalado, R. Photochem. Photobiol. 2000, 72, 714−718.
    [39] Dioumaev, A. K.; Biochemistry 2001, 66, 1269−1276.
    [40] Tamm, L. K.; Tatulian, S. A. Quart. Rev. Biophys. 1997, 30, 365−429.
    [41] Dwivedi, A. M.; Krimm, S. Biopolym. 1984, 23, 2025−2065. (HERE)
    [42] Krimms, S.; Dwivedi, A. M. Science 1982, 216, 407−408.
    [43] Barth, A.; Zscherp, C. Quart. Rev. Biophys. 2002, 35, 369−430.
    [44] Barth, A. Progr. Biophys. Mol. Biol. 2000, 74, 141−173.
    [45] Barnett, S. M.; Dracheva, S.; Hendler, R. W.; Levin, I. W. Biochemistry 1996, 35, 4558−4567.
    [46] Arrondo, J. L. R.; Go I, F. M. Chem. Phys. Lipids 1998, 96, 53−68.
    [47] Sasaki, J.; Lanyi, J. K.; Needleman, R.; Yoshizawa, T.; Maeda, A. Biochemistry 1994, 33, 3178−3184.
    [48] Rothschild, K. J.; Degrip, W. J.; Sanches, R. Biochem. Biophys. Acta 1980, 596, 338−351.
    [49] Rothschild, K, J.; Grip, W. J. D.; Stanley, H. E. Science 1976, 191, 1176−1178.
    [50] Ahmed, H. Principles and reactions of protein extraction, purification and characterization; Boca Raton, USA, 2005.
    [51] Rothschild, K. J.; Braiman, M. S.; He, Y. W.; Marti, T.; Khorana, H. G. J. Biol. Chem. 1990, 265, 16985−16991.
    78
    [52] Lórenz-Fonfría, V. A.; Furutani, Y.; Kandori, H. Biochemistry 2008, 47, 4071–4081.
    [53] Siebert, F.; Mäntele, W. Eur. J. Biochem. 1983, 130, 565–571.
    [54] Rothschild, K. J.; Roepe, P.; Lugtenburg, J.; Pardoen, J. A. Biochemistry 1984, 23, 6103–6109.
    [55] Zscherp, C.; Schlesinger, R.; Tittor, J.; Oesterhelt, D.; Heberle, J. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 5498–5503.
    [56] Morgan, J. E.; Vakkasoglu, A. S.; Lugtenburg, J.; Gennis, R. B.; Maeda, A. Biochemistry 2008, 47, 11598–11605.
    [57] Wang, J.; El-Sayed, M. A. Biophys. J. 2001, 80, 961–971.
    [58] Braiman, M. S.; Mogi, T.; Marti, T.; Stern, L. J.; Khorana, H. G.; Rothschild, K. J. Biochemistry 1988, 27, 8516−8520.
    [59] Smith, S. O.; Myers, A. B.; Mathies, R. A.; Pardoen, J. A.; Winkel, C.; Van Den Berg, E. M. M.; Lugtenburg, J. Biophys. J. 1985, 47, 653–664.
    [60] Riesle, J.; Oesterhelt, D.; Dencher, N. A.; Heberle, J. Biochemistry 2006, 35, 6635–6643.
    [61] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques; Elsevier, 2005.
    [62] Wartewig, S. IR and Raman Spectroscopy:Fundamental Processing; Wiley-VCH, 2005.
    [63] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy; Wiley-VCH, 2011.
    [64] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd.; Wiley, 2007.
    [65] Jiang, E. Y. Advanced FT-IR Spectroscopy; Thermo Electron Corporation, 2003.
    [66] Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Appl. Spectrosc. 1991, 45, 390-397.
    [67] Chu, L. K.; Lee, Y. P. Instruments Today 2009, 31, 27−35.
    [68] Noguchi, T.; Sugiura, M. Biochemistry 2002, 41, 2322–2330.
    [69] Mark, S. B,; Olaf, B.; Kenneth, J. R. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2388-2392.
    [70] Hartland, G. V.; Qin, D.; Dai, H. L. J. Chem. Phys. 1994, 100, 7832.
    [71] Yeh, P. S.; Leu, G. H.; Lee, Y. P.; Chen, I. C. J. Chem. Phys. 1995, 103, 4879.
    [72] Hu, X.; Frei, H.; Spiro, T. G. Biochemistry 1996, 35, 13001−13005.
    [73] Huang, C. Y.; Getahun, Z.; Wang, T.; DeGrado, W. F.; Gai, F. J. Am. Chem. Soc. 2001, 123, 12111−12112.
    [74] Vasenkov, S.; Frei, H. J. Phys. Chem. A 2000, 104, 4327−4332.
    [75] Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. J. Statist. Software 2012, 49, 1–22.
    79
    [76] Mertz, L. Transformations in Optics; Wiley, 1965.
    [77] Mertz, L. Infrared Phys. 1967, 7, 17–23.
    [78] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters; Springer Science & Business Media, 2002.
    [79] Fellgett, P. B. J. Phys. Radium 1958, 19, 187−191.
    [80] Jacquinot, P. Rep. Progr. Phys. 1960, 23, 267−312.
    [81] Connes, J.; Connes, P. J. Opt. Soc. Am. 1966, 56, 896−910.
    [82] Robin, R.; Gregor, H.; Marthias, L.; Klaus, G. Biochemistry 1998, 37, 5001−5009.
    [83] Christian, Z.; Ramona, S.; Jorg, T.; Dieter, O.; Joachim, H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5498−5503.
    [84] Lanyi, J, K., Bacteriorhodopsin, Chemistry of. In Wiley Encyclopedia of Chemical Biology, Begley, T.P., ED. John Wiley & Sons, Inc.: 2007.
    [85] Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Lugtenburg, J.; Gennis, R. B.; Maeda, A. Biophys. J. 2012, 103, 444−452.
    [86] Tittor, J.; Paula, S.; Subramaniam, S.; Heberle, J.; Henderson, R.; Oesterhelt, O., J. Mol. Biol. 2002, 319, 555−565.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE