簡易檢索 / 詳目顯示

研究生: 賴慶明
Lai, Ching-Ming
論文名稱: 適用於低壓分散式能源之新型高升壓比轉換器建模及並聯控制
Modeling and Parallel Control of Novel High Step-Up Converters for Low-Voltage Distributed Energy Resources
指導教授: 潘晴財
Pan, Ching-Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 153
中文關鍵詞: 低壓分散式能源高升壓比轉換器建模與並聯控制
外文關鍵詞: Low-Voltage Distributed Energy Resources (DERs), High Step-Up Converter, Modeling and Parallel Control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著油價高漲與環保議題受到關注,使得世界各國均積極推動替代能源分散式發電系統的開發。在小型分散式發電系統中,具有低電壓輸出特性的光伏電池與燃料電池,扮演著甚為重要的角色。本文之重點,即在針對此種低壓分散式能源提出具有高升壓比之高效率轉換器,以便將其提升至較高電壓以作為後級應用。本文首先針對高效率之目標,提出一新型多相升壓轉換器,其藉由順向式電路與倍壓電路的特性整合而得到低開關電壓應力、低導通週期、高升壓比與主動均流等優點。由於低開關電壓應力的電路特性,本文所提轉換器得以選用低額定電壓、低導通阻抗的功率元件以降低切換損失。而所提轉換器擁有的高升壓比能力則可避免開關工作週期過大、以有效地降低電路的導通損失、更有助於整體轉換效率的提升。基於相同的電路操作原理,所提新型轉換器的電路架構可拓展至三相、廣義n相以及另一種邱克型衍生電路。為了解本文所提新型轉換器的電路特性、本文除進行轉換器各工作模式的穩態電路分析之外,亦利用狀態空間平均技術推導得到直流、交流小訊號數學模型及其相對應的開路轉移函數,以供控制器補償與設計之用。再者,本文亦發展新型高升壓比轉換器的模組並聯系統,俾使所提轉換器更適用於具有低壓、大電流輸出特性的分散式能源。系統內各個高壓比轉換器模組除了保有原來的優良特性之外,整體系統的額定功率與可靠度亦能得到提升。針對此並聯系統,本文進一步提出並聯控制策略,以達到轉換器模組間負載電流之平均分擔、使系統在操作範圍內具有足夠的直流增益、增益交越頻率和相位餘裕。藉由所提轉換器本身優良的電路特性與並聯控制器的設計,本文所發展的高升壓比轉換器並聯系統能夠擁有較好的暫態響應及穩定性。最後,吾人依據理論分析的結果,實際製作一組規格為輸入電壓24V、輸出電壓200V、輸出功率400W的硬體電路用以驗證可行性。實測結果顯示所研製之轉換器並聯系統,其電能轉換效率於輕載至滿載的負載變化情況下皆保有93%以上,最高效率更能達到95.87%,而輸入電流漣波可降至50mA以下、模組間的平均電流誤差率低於5%。


    With global energy shortage and strong environment movements, many countries are encouraging and promoting the development of distributed alternative energy sources. It is well-known that photovoltaic and fuel cells play an important role in the small-scale distributed generation systems. However, the output voltage of such new energies is rather low. For this reason, the main objective of this dissertation is therefore to develop a high efficiency high step-up converter as an interface for back-end applications. In this dissertation, a new multiphase converter by integrating a voltage-doubler and a forward-type circuit is first proposed for achieving high step-up and high efficiency objectives. Some topological extensions which include a particular three-phase, the generalized n-phase, and another Ćuk-type integrated circuit are also derived preserving the same advantages of the low switch voltage stress, lower duty ratio, and high voltage gain. Second, steady-state analyses are then made to show the merits of the proposed converter topologies. For further understanding the dynamic characteristic of the proposed forward-type integrated high step-up converter, steady-state and small-signal models of this converter are derived using state-space averaging technique. Open-loop transfer functions such as control-to-output voltage, audio susceptibility, output impedance and control-to-input current in the small-signal model are also derived to analyze the system performance in terms of DC gain, bandwidth, and stability. Third, for higher power applications, modules of high step-up converters are paralleled to further reduce the input and output ripples. Analysis and control of the interconnected converter are also made in the context. Finally, a 400W rating parallel converter prototype system is constructed for verifying the validity of the proposed converter. Experimental results show that the total input current ripple of the prototype system can be reduced to below 50mA, the differences among shared currents of the prototype system are within 5% of the averaged current over the load variation, and the highest efficiency of 95.87% can be achieved.

    CHINESE ABSTRACT I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF FIGURE CAPTIONS VI LIST OF TABLE CAPTIONS XI 1.INTRODUCTION 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Contributions of the Dissertation 19 1.4 Outline of the Contents 21 2.ANALYSIS OF NOVEL HIGH STEP-UP CONVERTER 2.1 Introduction 23 2.2 Circuit Configuration and Operation Principle 24 2.3 Steady-State Analysis 29 2.4 Extended Topologies of the Proposed High Step-Up Converter 35 3.MODELING OF NOVEL HIGH STEP-UP CONVERTER 3.1 Introduction 53 3.2 State-Space Averaged Model Derivation 54 3.3 Converter Open-Loop Transfer Functions 66 3.4 Model Validations with SIMPLIS® Simulation 73 4.PARALLEL CONTROL OF NOVEL HIGH STEP-UP CONVERTERS 4.1 Introduction 77 4.2 Parallel Configuration and Small-Signal Analysis 78 4.3 Closed-Loop Control 86 4.4 Simulation Results 94 5.IMPLEMENTATION AND EXPERIMENTAL RESULTS 5.1 Introduction 103 5.2 Design Considerations 104 5.3 Implementation of the Prototype System 106 5.4 Experimental Results 111 6.CONCLUSITONS 6.1 Conclusions 120 6.2 Recommended Future Research 122 REFERENCES 123 APPENDIX A- A BRIEF OF THE PROPOSED NOVEL THREE-PHASE TYPE HIGH STEP-UP CONVERTER 136 APPENDIX B- DSP PROGRAM CODE FOR FOUR-PHASE PWM SIGNALS 143 VITA

    [1] S. R. Bull,“Renewable energy today and tomorrow,”Proceedings of the IEEE, vol.89, no.8, pp.1216-1226, Aug. 2001

    [2] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso,“Power-electronic systems for the grid integration of renewable energy sources: a survey,”IEEE Transactions on Industrial Electronics, vol.53, no.4, pp.1002-1016, Jun. 2006

    [3] J. S. Lai,“Power conditioning systems for renewable energies,”International Conference on Electrical Machines and Systems, pp.209-218, 2007

    [4] X. Xu and X. Zha,“Overview of the researches on distributed generation and microgrid,”International Power Engineering Conference, pp.966-971, 2007

    [5] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,”IEEE Power and Energy Magazine, vol.5, no.4, pp.78-94, Jul./Aug. 2007

    [6] E. Pavinatto, M. Peres, P. Reis, L. Pereira, and F. Salles,“Small power generation,”IEEE Industry Applications Magazine, vol.14, no.6, pp.62-68, Nov./Dec. 2008

    [7] B. K. Bose,“Global warming: energy, environment pollution, and the impact of power electronics,”IEEE Industrial Electronics Magazine, vol.4, no.1, pp.6-17, Mar. 2010

    [8] M. Liserre, T. Sauter, and J. Y. Hung,“Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics,”IEEE Industrial Electronics Magazine, vol.4, no.1, pp.18-37, Mar. 2010

    [9] G. Spagnuolo, G. Petrone, S. V. Araujo, C. Cecati, E. Friis-Madsen, E. Gubia, D. Hissel, M. Jasinski, W. Knapp, M. Liserre, P. Rodriguez, R. Teodorescu, and P. Zacharias, “Renewable energy operation and conversion schemes: a summary of discussions during the seminar on renewable energy systems,”IEEE Industrial Electronics Magazine, vol.4, no.1, pp.38-51, Mar. 2010

    [10] J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. P. Comech, R. Granadino, and J .I. Frau,“Distributed generation: toward a new energy paradigm,”IEEE Industrial Electronics Magazine, vol.4, no. 1, pp.52-64, Mar. 2010

    [11] U.S. Department of Energy,“International Energy Outlook 2009,”[Online] Available: http://www.eia.doe.gov

    [12] C. Jaen, C. Moyano, X. Santacruz, J. Pou, and A. Arias,“Overview of maximum power point tracking control techniques used in photovoltaic systems,” IEEE International Conference on Electronics, Circuits and Systems, pp.1099-1102, 2008

    [13] R. J. Wai, W. H. Wang, and C. Y. Lin,“High-performance stand-alone photovoltaic generation system,”IEEE Transactions on Industrial Electronics, vol.55, no.1, pp.240-250, Jan. 2008

    [14] J. T. Bialasiewicz,“Renewable energy systems with photovoltaic power generators: operation and modeling,” IEEE Transactions on Industrial Electronics, vol.55, no.7, pp.2752-2758, Jul. 2008

    [15] C. S. Wang and M. H. Nehrir,“Power management of a stand-alone wind/photovoltaic/fuel cell energy system,”IEEE Transactions on Energy Conversion, vol.23, no.3, pp.957-967, Sept. 2008

    [16] M. H. Chen, S. N. Yeh, and J. C. Hwang,“Design of single-phase three-level inverters for wind power systems with double-winding permanent-magnet synchronous generators,”International Journal of Electrical Engineering, vol.14, no.1, pp.39-49, 2007

    [17] H. Li and Z. Chen,“Overview of different wind generator systems and their comparisons,”IET Proceedings Renewable Power Generation, vol.2, no.2, pp.123-138, Jun. 2008

    [18] American Wind Energy Association,“AWEA Small Wind Turbine Global Market Study 2009,”[Online] Available: http://www.awea.org/smallwind/

    [19] M. S. Lu, C. L. Chang, W. J. Lee, and L. Wang,“Combining the wind power generation system with energy storage equipment,”IEEE Transactions on Industry Applications, vol.45, no.6, pp.2109-2115, Nov./Dec. 2009

    [20] R. P. S. Leao, F. L. M. Antunes, T. G. M. Lourenco, and K. R. Andrade,“A comprehensive overview on wind power integration to the power grid,”IEEE Transactions on Latin America, vol.7, no.6, pp.620-629, Dec. 2009

    [21] C. T. Pan and Y. L. Juan,“A novel sensorless MPPT controller for a high efficiency micro-scale wind power generation system,”IEEE Transactions on Energy Conversion, vol.25, no.1, pp.207-216, Jan. 2010

    [22] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic,“Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,”IEEE Transactions on Vehicular Technology, vol.54, no.3, pp.763-770, May 2005

    [23] X. Huang, Z. Zhang, and J. Jiang,“Fuel cell technology for distributed generation: an overview,”IEEE International Symposium on Industrial Electronics, pp.1613-1618, 2006

    [24] Z. Jiang and R. A. Dougal,“A compact digitally controlled fuel cell/battery hybrid power source,”IEEE Transactions on Industrial Electronics, vol.53, no.4, pp.1094-1104, Jun. 2006

    [25] J. S. Lai and D. J. Nelson,“Energy management power converters in hybrid electric and fuel cell vehicles,”Proceedings of the IEEE, vol.95, no.4, pp.766-777, Apr. 2007

    [26] X. Yu, M. R. Starke, L. M. Tolbert, and B. Ozpineci,“Fuel cell power conditioning for electric power applications: a summary,”IET Proceedings Electric Power Applications, vol.1, no.5, pp. 43-656, Sept. 2007

    [27] P. C. Buddingh, V. Scaini, and L. F. Casey,“Utilizing waste hydrogen for energy recovery using fuel cells and associated technologies,”IEEE Transactions on Industry Applications, vol.42, no.1, pp.186-194, Jan./Feb. 2006

    [28] K. H. Williamson, R. P. Gunderson, G. M. Hamblin, D. L. Gallup, and K. Kitz,“Geothermal power technology,” Proceedings of the IEEE, vol.89, no.12,pp.1783-1792, Dec. 2001

    [29] L. Y. Bronicki and D. N. Schochet,“A developer's perspective: eighteen years of field experience with innovative geothermal power plants,”IEEE Power Engineering Society Summer Meeting, pp.8-10, 2002

    [30] A. R. Valishin,“Geothermal energy and its applications,”International Conference Modern Technique and Technologies, pp.127-130, 2008

    [31] L. Tai, Q. Zhu, H. Lu, and X. Li,“Geothermal reinjection technology and its application in geothermal power plant,”International Conference on Energy and Environment Technology, pp.683-686, 2009

    [32] J. Cui, J. Zhao, C. Dai, and B. Yang,“Exergetic performance investigation of medium-low enthalpy geothermal power generation,”International Conference on Energy and Environment Technology, pp.636-639, 2009

    [33] M. W. Davis, A. H. Gifford, and T. J. Krupa,“Microturbines- an economic and reliability evaluation for commercial, residential, and remote load applications,”IEEE Transactions on Power Systems, vol.14, no.4, pp.1556-1562, Nov. 1999

    [34] F. S. Pai,“An improved utility interface for microturbine generation system with stand-alone operation capabilities,”IEEE Transactions on Industrial Electronics, vol.53, no.5, pp.1529-1537, Oct. 2006

    [35] F. S. Pai and S. J. Huang,“Design and operation of power converter for microturbine powered distributed generator with capacity expansion capability,”IEEE Transactions on Energy Conversion, vol.23, no.1, pp.110-118, Mar. 2008

    [36] X. Yu, Z. Jiang, and A. Abbasi,“Dynamic modeling and control design of microturbine distributed generation systems,”IEEE International Electric Machines and Drives Conference, pp1239-1243, 2009

    [37] A. K. Saha, S. Chowdhury, S. P. Chowdhury, and P. A. Crossley,“Modeling and performance analysis of a microturbine as a distributed energy resource,”IEEE Transactions on Energy Conversion, vol.24, no.2, pp.529-538, Jun. 2009

    [38] J. Eakburanawat, J. Khedari, J. Hirunlabh, S. Maneewan, M. Daguenet, and S. Teekasap,“Solar-biomass thermoelectric power generation simulation,”International Conference on Thermoelectrics, pp.582-584, 2003

    [39] R. P. Overend,“Biomass availability for biopower applications,”IEEE Power Engineering Society General Meeting, pp.1665-1667, 2004

    [40] R. L. Bain,“An overview of biomass combined heat and power technologies,”IEEE Power Engineering Society General Meeting, pp.1657-1659, 2004

    [41] C. Fry,“Road to rot [biomass industry],”Power Engineer, vol.20, no.3, pp.20-23, Jun./Jul. 2006

    [42] M. Hara, N. Yamamura, M. Ishida, Y. Kamada, T. Maeda, and M. Wakita,“Method of electric power compensation for wind power generation using biomass gas turbine generator and flywheel,”Power Conversion Conference, pp.243-248, 2007

    [43] G. Petrecca and R. Preto,“Energy efficiency technologies for clean electric power from biomasses: the state of the art and perspectives for the future,”International Conference on Clean Electrical Power, pp.98-102, 2009

    [44] S. M. N. Hasan and I. Husain,“Power electronic interface with ultracapacitors and motor control for a fuel cell electric vehicle,”IEEE Conference on Vehicle Power and Propulsion, pp.815-822, 2005

    [45] L. Gao, R. A. Dougal, and S. Liu,“Power enhancement of an actively controlled battery/ultracapacitor hybrid,”IEEE Transactions on Power Electronics, vol.20, no.1, pp.236-243, Jan. 2005

    [46] A. Schneuwly,“Charge ahead [ultracapacitor technology and applications],”Power Engineer, vol.19, no.1, pp.34-37, Feb./Mar. 2005

    [47] S. Buller, M. Thele, R. W. De doncker, and E. Karden “Supercapacitors and lithium-ion batteries for power electronic applications,”IEEE Industry Applications Magazine, vol.11, no.2, pp.62-67, Mar./Apr. 2005

    [48] C. Abbey and G. Joos,“Supercapacitor energy storage for wind energy applications,”IEEE Transactions on Industry Applications, vol.43, no.3, pp.769-776, May/Jun. 2007

    [49] J. Schindall,“The charge of the ultracapacitors,”IEEE Spectrum, vol.44, no.11, pp.42-46, Nov. 2007

    [50] P. Thounthong, S. Rael, and B. Davat,“Analysis of supercapacitor as second source based on fuel cell power generation,”IEEE Transactions on Energy Conversion, vol.24, no.1, pp.247-255, Mar. 2009

    [51] R. Y. Kim, J. S. Lai, B. York, and A. Koran, “Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system,” IEEE Transactions on Industrial Electronics, vol.56, no.9, pp.3709-3716, Sep. 2009

    [52] W. Li, X. Lv, Y. Deng, J. Liu, and X. He,“A review of non-isolated high step-up DC/DC converters in renewable energy applications,”IEEE Applied Power Electronics Conference and Exposition, pp.364-369, 2009

    [53] J. S. Lai,“Power conditioning circuit topologies,”IEEE Industrial Electronics Magazine, vol.3, no.2, pp.24-34, Jun. 2009

    [54] D. Maksimovic and S. Cuk,“Switching converters with wide DC conversion range,”IEEE Transactions on Power Electronics, vol.6, no.1, pp.151-157, Jan. 1991

    [55] X. G. Feng, J. J. Liu, and F. C. Lee,“Impendance specifications for stable DC distribution system,”IEEE Transactions on Power Electronics, vol.17, no.2, pp.151-157, Mar. 2002

    [56] L. H. S. C. Barreto, E. A. A. Coelho, V. J. Farias, J. C. de Oliveira, L. C. de Freitas, and Jr. Joao Batista Vieira,“A quasi-resonant quadratic boost converter using a single resonant network,”IEEE Transactions on Industrial Electronics, vol.52, no.2, pp. 552-557, Apr. 2005

    [57] Q. Zhao, F. Tao, F. C. Lee, P. Xu, and J. Wei,“A simple and effective to alleviate the rectifier reverse-recovery problem in continuous-current-mode boost converter,”IEEE Transactions on Power Electronics, vol.16, no.5, pp.649-658, Sep. 2001

    [58] X. Ruan, J. Wei, Y. Xue, and L. Zhou, “Voltage-sharing of the divided capacitors in non-isolated three-level converters,”IEEE Applied Power Electronics Conference and Exposition, pp.1725-1729, 2004

    [59] M. H. Todorovic, L. Palma, and P. N. Enjeti,“Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion,”IEEE Transactions on Industrial Electronics, vol.55, no.3, pp.1247-1255, Mar. 2008

    [60] I. Barbi and R. Gules,“Isolated DC-DC converters with high-output voltage for TWTA telecommunication satellite applications,”IEEE Transactions on Power Electronics, vol.18, no.4, pp.975-984, Jul. 2003

    [61] T. Filchev, D. Cook, P. Wheeler, and J. Clare,“Investigation of high voltage, high frequency transformers/voltage multipliers for industrial applications,”IET Power Electronics, Machines and Drives Conference, pp.209-213, 2008

    [62] J. A. Martin-Ramos, A. M. Pernia, J. Diaz, F. Nuno, and J. A. Martinez,“Power supply for a high-voltage application,”IEEE Transactions on Power Electronics, vol.23, No.4, pp.1608-1619, Jul. 2008

    [63] H. D. Thai, J. Barbaroux, H. Chazal, Y. Lembeye, J. C. Crebier, and G. Gruffat,“Implementation and Analysis of large winding ratio transformers,”IEEE Applied Power Electronics Conference and Exposition, pp.1039-1045, 2009

    [64] S. J. Finney, B. W. Williams, and T. C. Green,“RCD snubber revisited,” IEEE Transactions on Industry Applications, vol.32, no.1, pp.155-160, Jan./Feb. 1996

    [65] A. Garcia-Caraveo, A. Soto, R. Gonzalez, and P. Banuelos-Sanchez,“Brief review on snubber circuits,” International Conference on Electronics, Communications and Computer, pp.271-275, 2010

    [66] Y. S. Lee and B. T. Lin,“Adding active clamping and soft switching to boost-flyback single-stage isolated power-factor-corrected power supplies,”IEEE Transactions on Power Electronics, vol.12, no.6, pp.1017-1027, Nov. 1997

    [67] C. H. G. Treviso, A. A. Pereira, V. J. Farias, J. B. Jr. Vieira, and L.C. de Freitas,“A 1.5 kW two transistors forward converter using a non-dissipative snubber,”IEEE International Symposium on Circuits and Systems, pp.470-473, 1998

    [68] M. M. Jovanovic and Y. Jang,“A new soft-switched boost converter with isolated active snubber,”IEEE Transactions on Industry Applications, vol.35, no.2, pp.496-502, Mar./Apr. 1999

    [69] C. M. C. Duarte and I. Barbi,“An improved family of ZVS-PWM active-clamping DC-to-DC converters,”IEEE Transactions on Power Electronics, vol.17, no.1, pp.1-7, Jan. 2002

    [70] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type of active clamp,”IEEE Transactions on Industrial Electronics, vol.55, no.1, pp.154-162, Jan. 2008

    [71] X. Wu, J. Zhang, X. Ye, and Z. Qian,“Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell,”IEEE Transactions on Industrial Electronics, vol.55, no.2, pp.773-781, Feb. 2008

    [72] J. S. Lai,“A high-performance V6 converter for fuel cell power conditioning system,”IEEE Conference Vehicle Power and Propulsion, pp.624-630, 2005

    [73] C. Liu, A. Johnson, and J. S. Lai,“A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications,”IEEE Transactions on Industry Applications, vol.41, no.6, pp.1691-1697, Nov./Dec. 2005

    [74] C. Liu, A. Ridenour, and J. S. Lai,“Modeling and control of a novel six-leg three-phase high-power converter for low-voltage fuel cell applications,”IEEE Transactions on Power Electronics, vol.21, no.5, pp.1292-1300, Sept. 2006

    [75] H. Kim, C. Yoon, and S. Choi,“A three-phase zero-voltage and zero-current switching DC-DC converter for fuel cell applications,”IEEE Transactions on Power Electronics, vol.25, no.2, pp. 391-398, Feb. 2010

    [76] L. Zhu, K. Wang, J. S. Lai, and F. C. Lee, “New start-up schemes for active-clamp isolated full-bridge boost converters,”IEEE Transactions on Power Electronics, vol.18, no.4, pp.946-951. Jul. 2003

    [77] H. Cha, J. Choi, and P. N. Enjeti,“A three-phase current-fed DC/DC converter with active clamp for low-DC renewable energy sources,”IEEE Transactions on Power Electronics, vol.23, no.6, pp.2784-2793, Nov. 2008

    [78] M. Nymand and M. A. E. Andersen,“High-efficiency isolated boost DC-DC converter for high-power low-voltage fuel-cell applications,”IEEE Transactions on Industrial Electronics, vol.57, no.2, pp.505-514, Feb. 2010

    [79] J. K. Park, W. Y. Choi, and B. H. Kwon,“A step-up DC-DC converter with a resonant voltage doubler,”IEEE Transactions on Industrial Electronics, vol.54, no.6, pp.3267-3275, Dec. 2007

    [80] J. M. Kwon and B H. Kwon,“High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,”IEEE Transactions on Power Electronics, vol.24, no.1, pp.108-115, Jan. 2009

    [81] Q. Zhao and F.C. Lee,“High-efficiency, high step-up DC-DC converters,”IEEE Transactions on Power Electronics, vol.18, no.1, pp.65-73, Jan. 2003

    [82] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,”IEE Proceedings Electric Power Applications, vol.151, no.2, pp.182-190, Mar. 2004

    [83] T. J. Liang and K. C. Tseng,“Analysis of integrated boost-flyback set-up converter,”IEE Proceedings Electric Power Applications, vol.152, no.2, pp.217-225, Mar. 2005

    [84] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim,“High boost converter using voltage multiplier,” IEEE Annual Conference of Industrial Electronics Society, pp.567-572, 2005

    [85] O. Krykunov,“Analysis of the extended forward converter for fuel cell applications,”IEEE International Symposium on Industrial Electronics, pp.661-666, 2007

    [86] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon, and M. J. Youn,“Integrated boost-sepic converter for high step-up applications,”IEEE Power Electronics Specialists Conference, pp.944-950, 2008

    [87] R. J. Wai and R. Y. Duan,“High-efficiency DC/DC converter with high voltage gain,”IEE Proceedings Electric Power Applications, vol.152, no.4, pp.793-802, Jul. 2005

    [88] R. J. Wai, L. W. Liu, and R. Y. Duan,“High-efficiency voltage-clamped DC-DC converter with reduced reverse-recovery current and switch voltage stress,”IEEE Transactions on Industrial Electronics, vol.53, no.1, pp.272-280, Feb. 2006

    [89] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency DC-DC converter with high voltage gain and reduced switch stress,”IEEE Transactions on Industrial Electronics, vol.54, no.1, pp.354-364, Feb. 2007

    [90] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage,”IEEE Transactions on Industrial Electronics, vol.55, no.10, pp.3702-3714, Oct. 2008

    [91] F. L. Luo and H. Ye,“Positive output super-lift converters,”IEEE Transactions on Power Electronics, vol.18, no.1, pp.105-113, Jan. 2003

    [92] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang,“Novel high step-up DC-DC converter for fuel cell energy conversion system,”IEEE Transactions on Industrial Electronics, vol.57, no.6, pp.2007-2017, Jun. 2010

    [93] M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules,“Voltage multiplier cells applied to non-isolated DC-DC converters,”IEEE Transactions on Power Electronics, vol.23, no.2, pp.871-887, Mar. 2008

    [94] S. V. Araujo, R. P. T. Bascope, G. V. T. Bascope, and L. Menezes,“Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier,”IEEE Power Electronics Specialists Conference, pp.2271-2277, 2008

    [95] Y. J. A Alcazar, W. G. C. Cabero, R. P. T. Bascope, S. Daher, D. S. Oliveira, and G. J. M. de Sousa,“Modeling and control of the high voltage gain boost converter based on three-state switching cell and voltage multipliers (mc),”Power Electronics Conference, pp.655-664, 2009

    [96] H. S. Chung, A. Ioinovici, and W. L. Cheung, “Generalized structure of bi-directional switched-capacitor DC/DC converters,”IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.50, no.6, pp.743-753, Jun. 2003

    [97] F. Z. Peng, F. Zhang, and Z. Qian,“A magnetic-less DC-DC converter for dual-voltage automotive systems,”IEEE Transactions on Industry Applications, vol.39, no.2, pp.511-518, Mar./Apr. 2003

    [98] B. Axelrod, Y. Berkovich, and A. Ioinovici,“Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC-DC PWM Converters,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol.55, no.2, pp.687-696, Mar. 2008

    [99] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,”IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.50, no.8, pp. 1098-1102, Aug. 2003

    [100] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun,“A family of single-switch PWM converters with high step-up conversion ratio,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol.55, no.4, pp.1159-1171, May 2008

    [101] E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High conversion ratio DC-DC converters with reduced switch stress,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol.55, no.7, pp.2139-2151, Aug. 2008

    [102] L. S. Yang, T. J Liang, and J. F. Chen, “Transformerless DC-DC converters with high step-up voltage gain,”IEEE Transactions on Industrial Electronics, vol.56, no.8, pp.3144-3152, Aug. 2009

    [103] G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions between fuel cells and power converters: influence of current harmonics on a fuel cell stack,”IEEE Transactions on Power Electronics, vol.22, no.2, pp.670-678, Mar. 2007

    [104] Y. Jang and M. M. Jovanovic,“Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end,”IEEE Transactions on Power Electronics, vol.22, no.4, pp.1394-1401, Jul. 2007

    [105] J. C. Hwang, L. H. Chen, and S. N. Yeh,“Comprehensive analysis and design of multi-leg fuel cell boost converter,”Applied Energy, vol.84, no.12, pp.1274-1288, Dec. 2007

    [106] C. T. Pan, S. K. Liang, and C. M. Lai,“A zero input current ripple boost converter for fuel cell applications by using a mirror ripple circuit”IEEE International Power Electronics and Motion Control Conference, pp.787-793, 2009

    [107] S. K. Mazumder, R. K. Burra, and K. Acharya, “A ripple-mitigating and energy-efficient fuel cell power-conditioning system,”IEEE Transactions on Power Electronics, vol.22, no.4, pp.1437-1452, Jul. 2007

    [108] C. Liu and J. S. Lai, “Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load,”IEEE Transactions on Power Electronics, vol.22, no.4, pp.1429-1436, Jul. 2007

    [109] C. Pica, M. Bollero, A. Bollero, A. Tencbni, and L. Limongi,“Single-phase power conditioner with reduced low-frequency current ripple for fuel cells in distributed generation applications,”International Conference on Optimization of Electrical and Electronic Equipment, pp.357-362, 2008

    [110] A. Testa, S. De Caro, D. Caniglia, V. Antonucci, M. Ferraro, and F. Sergi,“Compensation of the low frequency current ripple in single phase grid connected fuel cell power systems,”European Conference on Power Electronics and Applications, pp.1-10, 2009

    [111] J. M. Kwon, E. H. Kim, B. H. Kwon, and K. H. Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Transactions on Industrial Electronics, pp.826-834, vol.56, no.3, Mar. 2009

    [112] J. I. Itoh and F. Hayashi,“Ripple current reduction of a fuel cell for a single-phase isolated converter using a DC active filter with a center tap,”IEEE Transactions on Power Electronics, vol.25, no.3, pp.550-556, May 2010

    [113] B. Choi, B. H. Cho, R. B. Ridley, and F. C. Lee, “Control strategy for multi-module parallel converter system,”IEEE Power Electronics Specialists Conference, pp.225-234, 1990

    [114] B. Choi,“Comparative study on paralleling schemes of converter modules for distributed power applications,” IEEE Transactions on Industrial Electronics, vol.45, no.2, pp.194-199, Apr. 1998

    [115] C. S. Lin and C. L. Chen,“Single-wire current-share paralleling of current-mode-controlled DC power supplies,” IEEE Transactions on Industrial Electronics, vol.47, no.4, pp.780-786, Aug. 2000

    [116] J. J. Shieh,“Analysis and design of parallel-connected peak-current-mode-controlled switching DC/DC power supplies,”IEE Proceedings Electric Power Applications, vol.151, no.4, pp.434-442, Jul. 2004

    [117] Y. Huang and C. K. Tse,“Circuit theoretic classification of parallel connected DC-DC converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, no.5, pp.1099-1108, May 2007

    [118] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled converters,”IEEE Transactions on Power Electronics, vol.8, no.4, pp.455-465, Oct. 1993

    [119] G. Garcera, M. Pascual, and E. Figueres,“Robust average current-mode control of multimodule parallel DC-DC PWM converter systems with improved dynamic response,” IEEE Transactions on Industrial Electronics, vol.48, no.5, pp.995-1005, Oct. 2001

    [120] M. Lopez, L. G. de Vicuna, M. Castilla, P. Gaya, and O. Lopez,“Current distribution control design for paralleled DC/DC converters using sliding-mode control,” IEEE Transactions on Industrial Electronics, vol.51, no.2, pp.419-428, Apr. 2004

    [121] S. H. Li and C. M. Liaw,“Paralleled DSP-based soft switching-mode rectifiers with robust voltage regulation control,”IEEE Transactions on Power Electronics, vol.19, no.4, pp.937-946, Jul. 2004

    [122] C. T. Pan and Y. H. Liao,“Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,”IEEE Transactions on Industrial Electronics, vol.54, no.2, pp.825-838, Apr. 2007

    [123] C. T. Pan and Y. H. Liao,“Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing,”IEEE Transactions on Industrial Electronics, vol.55, no.7, pp.2776-2785, Jul. 2008

    [124] Y. Xue, L. Chang, S. B. Kjaer, J.Bordonau, and T. Shimizu,“Topologies of single-phase inverters for small distributed power generators: an overview,”IEEE Transactions on Power Electronics, vol.19, no.5, pp.1305-1314, Sept. 2004

    [125] S. Jain, Jin Jiang, X. H. Huang, and S. Stevandic, “Single stage power electronic interface for a fuel cell based power supply system,”IEEE Canada Electrical Power Conference, pp.201-206, 2007

    [126] L. H Zhang, X. Yang, and X. F Yao, “An isolated single stage buck-boost inverter,”IEEE Power Electronics Specialists Conference, pp.2389-2395, 2008

    [127] F. Gao, P. C. Loh, R. Teodorescu, F. Blaabjerg,and D. M. Vilathgamuwa,“Topological design and modulation strategy for buck-boost three-level inverters,”IEEE Transactions on Power Electronics, vol.24, no.7, pp.1722-1732, Jul. 2009

    [128] F. Gao, P. C. Loh, R. Teodorescu, and F. Blaabjerg, “Diode-assisted buck-boost voltage source inverters,” IEEE Transactions on Power Electronics, vol.24, no.9, pp.2057-2064, Sep. 2009
    Modular Converter Configurations

    [129] R. Giri, R. Ayyanar,and E. Ledezma,“Input-series and output-series connected modular DC-DC converters with active input voltage and output voltage sharing,”IEEE Applied Power Electronics Conference and Exposition, pp.1751-1756, 2004

    [130] X. Kong and A. M. Khambadkone,“Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,”IEEE Transactions on Power Electronics, vol.22, no.2, pp.543-550, Mar. 2007

    [131] Y. Huang, C. K. Tse, and X. Ruan,“General control considerations for input-series connected DC/DC converters,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol.56, no.6, pp.1286-1296, Jun. 2009

    [132] W. Chen, X. Ruan, H. Yan, and C. K. Tse, “DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications,”IEEE Transactions on Power Electronics, vol.24, no.6, pp.1463-1474, Jun. 2009

    [133] Y. Zhao, W. Li, W C. Li, and X. He, “An active clamp ZVT converter with input-parallel and output-series configuration,”IEEE Applied Power Electronics Conference and Exposition, pp.1454-1459, 2010
    Manuals, Application Notes

    [134] L. H. Dixon, “Average current mode control of switching power supplies,”Unitrode,1990

    [135] E. Rogers,“Understanding boost power stages in switch mode power supplies,”Texas Instruments, pp.1-32, Mar. 1999

    [136] PSIM: User Manual, Powersim Technologies Inc., Jan. 1999

    [137] Control System Toolbox 8.5: Design and analyze control systems: User’s Guide, MathWorks. [Online] Available: http://www.mathworks.com

    [138] SIMetrix/SIMPLIS: User's Manual, SIMetrix Technologies Ltd. [Online] Available: http://www.simetrix.co.uk

    [139] TMS320x28335: Enhanced Pulse Width Modulator (ePWM) Module Reference Guide, SPRUG04, Texas Instruments, Oct. 2008

    [140] TMS320x28335: Analog-to-Digital Converter (ADC) Module Reference Guide, SPRU812A, Texas Instruments, Oct. 2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE