簡易檢索 / 詳目顯示

研究生: 陳柏宇
Chen, Bo-Yu
論文名稱: 通過手性肽分子結的自旋輸運之第一原理計算
First-principles calculations of spin transport in chiral peptide Molecular Junctions
指導教授: 關肇正
Kaun, Chao-Cheng
陳馨怡
Chen, Hsin-Yi
口試委員: 徐斌睿
Hsu, Pin-Jui
唐毓慧
Tang, Yu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 自旋電子學結磁阻手性誘導自旋選擇性第一原理非平衡格林函數
外文關鍵詞: Spintronics, Junction Magnetoresistance, Chiral-induced Spin Selectivity, First-principle
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自旋電子學中,有機材料作為自旋傳輸材料的使用在近年來引起了廣泛的關注,然而在一般的有機材料當中,因為自旋軌道交互作用(spin-orbital interation,SOI)較弱,無法成為較好的材料。因此,自旋極化電流通常由鐵磁性或強自旋軌道交互作用的無機材料產生。
    然而,在近年來的諸多論文報告顯示,發現了通過螺旋分子的自旋選擇電子傳輸,也就是所謂的手性誘導自旋選擇性效應(CISS),他們提出了使用有機材料作為自旋濾波器的另一種方法。
    於是本研究使用的有機材料為甘胺酸(glycine)分子,甘胺酸是胺基酸的一種,其主要結構分為兩種(螺旋/直鏈),再將此胜肽分子來搭建出量子輸運系統,並在其一電極(Ni)施加不同方向的極化方向。利用第一原理對胜肽進行結構優化及電性分析,觀察不同結構的Transmission、LDOS、IVcurve和Junction magnetoconductance(JMC)在兩種自旋極化下的自旋選擇性效應,並比較了各結構的一般物理性質。
    根據研究結果,我們發現左旋的電子透射頻譜在費米能階上的數值要大於右旋將近10~100倍,螺旋結構的結磁導率到達了5%,且在電子傳輸能力與電導上,螺旋結構均要高於直鏈結構。然而,關鍵的是我們發現電子在穿過螺旋結構分子的地方,其中一自旋態的自旋電流要高於另一種自旋態,且差別較為明顯;相反的,直鏈結構分子的兩種自旋態差別甚小。其推測主要原因為:螺旋結構相較於直鏈結構,其分子間交互作用力較強,也反映出手性螺旋分子相較於直鏈分子更好的誘發自旋選擇性效應(CISS)。


    In spintronics, using organic materials as spin transporting materials has attracted attention in recent years. Although the spin has been investigated extensively, there remains a challenge to utilize spin for electronic application.
    However, in general organic materials, the weak spin-orbit interaction (SOI) becomes a disadvantage. Interestingly, It has recently been discovered that the spin-selective electron transmission of the chiral molecule is known as the chiral-induced spin selectivity (CISS) effect. They proposed another method of using organic materials as spin filters.
    So the organic material used in this study is glycine molecule, glycine is a kind of amine acid, its main structure is divided into two (helix & straight chain), and then the peptide molecule to build a electronic-transport system, and in one electrode (Ni) to apply a different direction of polarization. Using the first principle to optimize the structure and electro-electrical analysis of the peptide, finally, the spin-selective effects of Transmission, LDOS, Junction magnetoconductance (JMC) and IVcurve of different structures were observed, and the general physical properties of each structure were compared.
    According to the results of the study, we find that the value of the electron transmission spectrum of the left-handed is nearly 10 to 100 times greater than that of the right-hand tron, the JMC of the spiral structure reached 5% and the spiral structure is higher than the straight chain structure in the electron transmission capacity and conductivity. Crucially, however, we find that electrons pass through the spiral structure molecules, where one spin current is higher than the other, and the difference is more obvious; The main reason for the speculation: the spiral structure compared to the straight chain structure, its molecular interaction force is strong, but also reflects the chiral molecules than the straight chain molecules better induced spin selectivity (CISS).

    摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3研究動機 5 第二章 理論計算 6 2.1多體系統與平均場近似 6 2.1.1兩粒子的Hartree-Fock近似 7 2.2 密度泛函理論(DFT) 9 2.2.1 緣起 Thomas-Fermi 模型 10 2.2.2 Hohenberg-Kohn 定理 10 2.2.3 Kohn-Sham 方法 12 2.3交換相關能泛函 14 2.3.1局部密度近似(LDA) 14 2.3.2普遍化梯度近似(GGA) 15 2.4非平衡系統格林函數(NEGF) 16 2.4.1含時多體格林函數(g^>,g^<,g^R,g^A) 16 2.4.2非平衡態的格林函數-Keldysh方程 19 2.5 NEGF-DFT應用:電子輸運 23 2.5.1輸運系統&自洽場方法 23 2.5.2鐵磁隧道結的磁阻效應 26 2.6相關文章探討-手性誘導自旋選擇性效應(CISS)應用 30 第三章 模擬軟體介紹 33 第四章 計算結果與分析 34 4.1 Ni兩種自旋極化下之右旋GLY_D分析 36 4.2 Ni兩種自旋極化下之左旋GLY_L分析 39 4.3 Ni兩種自旋極化下之直鏈〖GLY〗_3分析 41 4.4 Ni兩種自旋極化下之直鏈〖GLY〗_10分析 43 4.5 Junction magnetoconductance(JMC)、IVcurve分析 45 第五章 結論 49 附錄A 51 參考文獻 52

    [1] William Thomas Astbury, 1898-1961. Biographical Memoirs of Fellows of the Royal Society. Vol. 9. (Nov.,), pp. 1-35. (1963)
    [2]https://web.archive.org/web/20101219092723/http://www.biomed.curtin.edu.au/biochem/tutorials/prottute/helices.htm#Table1.1
    [3] wwPDB, Consortium. “Protein Data Bank: the single global archive for 3D macromolecular structure data” (2019)
    [4] Y. Wang, Z. Yu, F. Zahid, L. Liu, Y. Zhu, J. Wang, H. Guo. J. “Direct tunneling through high-κ amorphous HfO2: Effects of chemical modification” Appl. Phys. 116, 023703 (2014)
    [5] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas” Phys. Rev. 136, 864 (1964)
    [6] Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. “Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA.” Science 331, 894−897. (2011)
    [7] Mishra, D.; Markus, T. Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. “SpinDependent Electron Transmission through Bacteriorhodopsin Embedded in Purple Membrane”. Proc. Natl. Acad. Sci. U. S. A. 110, 14872−14876. (2013)
    [8] Varade, V.; Markus, T.; Vankayala, K.; Friedman, N.; Sheves, M.; Waldeck, D. H.; Naaman, R. “Bacteriorhodopsin Based NonMagnetic Spin Filters for Biomolecular Spintronics.” Phys. Chem. Chem. Phys. 20, 1091−1097. (2018)
    [9] Kettner, M.; Göhler, B.; Zacharias, H.; Mishra, D.; Kiran, V.; Naaman, R.; Fontanesi, C.; Waldeck, D. H.; Sęk, S.; Pawłowski, J.; et al. “Spin Filtering in Electron Transport Through Chiral Oligopeptides.” J. Phys. Chem. C 119, 14542−14547. (2015)
    [10] Mondal, P. C.; Fontanesi, C.; Waldeck, D. H.; Naaman, R. “Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry.” ACS Nano 9, 3377−3384. (2015)
    [11] Kiran, V.; Mathew, S. P.; Cohen, S. R.; Hernández Delgado, I.; Lacour, J.; Naaman, R. Helicenes “A New Class of Organic Spin Filter.” Adv. Mater. 28, 1957−1962. (2016)
    [12] Kettner, M.; Maslyuk, V. V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K.-H.; Zacharias, H. “Chirality Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes.” J. Phys. Chem. Lett. 9, 2025−2030. (2018)
    [13] Gu, H.; Zhang, X.; Wei, H.; Huang, Y.; Wei, S.; Guo, Z. “An Overview of the Magnetoresistance Phenomenon in Molecular Systems. Chem.” Soc. Rev. 42, 5907−5943. (2013)
    [14] Bass, J. “CPP Magnetoresistance of Magnetic Multilayers: A Critical Review.” J. Magn. Magn. Mater. 408, 244−320. (2016)
    [15] Kessler, Joachim. “Description of Polarized Electrons.” Polarized Electrons. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 7–20. (1976)
    [16] Reza Ranjbar. “Structural and Magnetic Properties for Bilayers of Cubic and Tetragonal Heusler Alloys” TOHOKU UNIVERSITY B2TD3010 (2015)
    [17] Volodymyr V. Maslyuk, Rafael Gutierrez, Arezoo Dianat, Vladimiro Mujica, and Gianaurelio Cuniberti “Enhanced Magnetoresistance in Chiral Molecular Junctions” J. Phys. Chem. Lett. 2018, 9, 5453−5459 (2018)
    [18] Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. “Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules.” Science (Washington, DC, U. S.)283, 814−816. (1999)
    [19] Xie, Z.; Markus, T. Z.; Cohen, S. R.; Vager, Z.; Gutierrez, R.; Naaman, R. “Spin Specific Electron Conduction through DNA Oligomers.” Nano Lett. 11, 4652−4655 (2011)
    [20] Naaman, R.; Waldeck, D. H. “Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu.” Rev. Phys. Chem., 66, 263−281. (2015)
    [21] Gianluca Stefanucci,Robert van Leeuwen “Nonequilibrium Many-Body Theory of Quantum Systems:A Modern Introduction” 205 (2013)
    [22] J.C. Slater, “Note on Hartree’s Method”Phys. Rev.35,210 (1930)
    [23] V. Fock, “Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems.” Z. phys. 61,126 (1930)
    [24] 胡英,劉洪來 “Density Functional Theory” 科學出版社 45-220 (2016)
    [25] Thomas L.H. “The calculation of atomic fields.” Proc Cambridge Phil Soc,23-542 (1927)
    [26] Femi E. “Un metodo statistice per la determinazionadi alcune propeieta dell'atomo” .Rend Accad Lincei,6-602 (1927)
    [27] Hohenberg P, Kohn W. “Inhomogeneous electron gas”.Phys Rev. 136-B864 (1964)
    [28] Kohn W, Sham L.J. “Self consistent equations including exchange and correlation effects.”Phys Rev,140-A1133 (1965)
    [29] Xiao Zheng, Fan Wang, Chi Yung Yam, Yan Mo, and Guan Hua Chen, “Timedependent density-functional theory for open systems”, Phys. Rev. B 75, 195127 (2007)
    [30] Yongqiang Xue , Supriyo Datta , Mark A. Ratner , “First-principles based matrix Green’s function approach to molecular electronic devices: general formalism”, Chemical Physics 281 151–170 (2002)
    [31] Magnus Paulsson and Mads Brandbyge, “Transmission eigenchannels from nonequilibrium Green’s functions” PHYSICAL REVIEW B 76, 115117 (2007)
    [32] 王懷玉 “凝聚態物理的格林函數理論” 現代物理基礎叢書:16 47-100(2008)
    [33] “ECONOMOU E N. Green's Functions in Quantum Physics[M].” New York:Springer-Verlag, (1983)
    [34] Keldysh L.V. “Diagram Technique for Nonequilibrium Process.” Soviet Physics JETP 20(4),1018 (1965)
    [35] Sun Qing-feng, Wang Bai-geng, Wang Jian, et al “Electron transport through a mesoscopic hybrid multiterminal resonant-tunneling system.” Phys. Rev. B (2000)
    [36] Yeyati A.L,Martin-Rodero Q, Garcia-Vidal F.J. “Self-consistent theory of superconducting mesoscopic weak links.” Phys. Rev. B (1995)
    [37] Gu R.Y, Xing D.Y, Dong J.M. “Spin-polarized tunneling between ferromagnetic films.” J.Appl. Phys. 80(12):7163 (1996)
    [38] hzwtech, “Nanodcal Theory by NanoAcademic Technologies Inc” hzwtech 1-192 (2017)
    [39] J. M Soler, E. Artacho, J. D Gale, A. Garcia, J. Junquera1, P. Ordejon, D. Sanchez-Portal “The SIESTA method for ab initio order-N materials simulation” J Physcondens Mat,14 2745-2779 (2002)
    [40] D. Waldron, Lei Liu, Hong Guo “Ab Initio Simulation of Magnetic Tunnel Junctions” Nanotechnology,18 424026 (2007)
    [41] NATIONAL INSTITUTES OF NATURAL SCIENCES “Manipulating electron spin using artificial molecular motors” opto-electronic technology information p18 (2019)
    [42] D.A. Petukhov “Spin-polarized current and tunnel magnetoresistance in heterogeneous single-barrier magnetic tunnel junctions” Physica E 80 31–35 (2016)
    [43] https://en.wikipedia.org/wiki/Spintronics

    QR CODE