研究生: |
李康平 Lee, Kang-Ping |
---|---|
論文名稱: |
以氯化鋁溶液塗佈形成背面氧化鋁鈍化層的n型太陽能電池之研究 Study of AlOx Passivation Layer Formed by Coating Al2O3 Solution on the Rear Side of N-Type Silicon Solar Cell |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
甘炯耀
Gan, Jon-Yiew 李明昌 Lee, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 背表面鈍化層太陽能電池 |
外文關鍵詞: | PERC solar cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
業界太陽能電池效率已到瓶頸,所以現今許多學者著重於成本的降低,因此本論文的主題是開發一種化學濕法沉積方法,用於形成表面鈍化薄膜,以取代業內使用的傳統真空沉積設備。首先由實驗室的特殊製絨,將n型單晶片表面形成微結構,並降低其反射率,接著使用實驗室內的爐管擴散,再利用四點探針找出擴散成功的片子,發現其lifetime比未擴散時提升,從此證明有好的擴散效果。由於粗糙化時蝕刻較深,所以需要探討最佳抗反射層厚度,發現在160nm時,其反射率對波長的分布圖最為恰當。
另一部份則是如何產生效果最好的鈍化層,用單晶空片直接在其雙面塗上氯化鋁,並探討不同退火溫度、不同退火時間和不同氯化鋁濃度的lifetime變化,而發現在退火時間25秒、退火溫度為820℃和1g氯化鋁/100ml水 時會有最高lifetime提升的倍率(9.29倍),因此鈍化層都用這參數。
而最後的I-V量測效率,因為製絨粗糙化的關係,所以需要更長的燒結時間,才能使正面銀漿穿過氮化矽抗反射層,而實測結果在燒結40秒會有最好的效率,全面鋁效率最高為9.97%,而PERC架構效率只有約6.5%,用SEM觀測其背部BSF的厚度, 發現全面鋁的厚度不一,而PERC架構厚度很薄甚至沒有,原因可能是背部沒拋光導致背部的溶液和漿料都不均勻,影響其接觸的效果,因此未來會想辦法研究出背部平坦化的技術,提升更好的效率。
The solar energy efficiency has lately been stranded at a bottleneck of development, and therefore the only thing that many researchers pay attention to is to lower the cost. Thus, the main theme of this thesis is developing a chemical wet deposition method for forming surface passivation thin films to replace conventional vacumn deposition facilities used in the industry. First, we textured the n-type wafers such that microstructures were formed on their surfaces,in order to reduce the reflectivity after an antirefiection layer was later coated the surface. To form a dopant layer on the front, we used the horizontal tube to diffuse phosphorus into the wafer. Then, the successfully diffused wafers were confirmed by 4-point probe measurement. Because the textured wafers were etched a little deeply, we had to chooce a proper thickness of the antirefiection layer ,which was 160nm in this study.
Another part of this study is about how to generate the best passivation layer by coating AlCl3 on both side of the monocrystalline wafers. We discuss the lifetime variation with different annealing temperature , annealing time , as well as the concentration of the AlCl3 soultion. We found the best condition for forming the passivation layers, which is 25sec for the annealing time, 820℃for the annealing temperature, and 1g /100ml for the solution concentration. These parameters were utilized thoughout this study.
The textured wafers needed more sinter time to make the silver paste go through the antireflection layer of SiNx because the SiNx layer was thick. The best sinter time was found to be 40 seconds. In our study, the cell with full aluminum rear contact had a conversion efficiency of 9.97%, in contrast to the 6.5% of PERC cells fabricated by sintering a gird pattern of aluminum rear contact. The reason for the low efficiency of PERC cells was the lack of uniform back surface fields over the rear surface.
[1] https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%
83%BD%E7%94%B5%E6%B1%A0
[2] http://www.isu.edu.tw/upload/81201/41/news/postfile_7422.pdf
[3] https://rsprc.ntu.edu.tw/zh-tw/m01-3/energy-transformation/open- energy/912- 2017-open-energy-st-review.html
[4] Wolfgang Palz, Power for the world - the emergence of electricity from the sun, Pan Stanford Publishing, 2010.
[5] S. R. Wenham and M. A. Green, “Silicon solar cells,” Progress in Photovoltaics:
Research and Applications, vol 4, pp.3-33, 1996.
[6] D .M. Chapin ,C. S. Fller, and G. L. Pearson,“A new silicon p-n junction photocell for converting solar radiation into electrical power,” Applied Physics, Vol.25, pp.676-677, 1954.
[7] Taguchi, M., et al., “24.7% record efficiency HIT solar cell on thin silicon
wafer, ” IEEE Journal of Photovoltaics, pp. 96-99,2014.
[8] Shockley. W. and H.J. Queisser, “ Detailed balance limit of efficiency of p‐n
junction solar cells.,” Journal of Applied Physics, ,32(3): pp. 510-519, 1961.
[9] https://www.energy.gov/eere/solar/downloads/research-cell-efficiency-records
[10] C. W. Kuo, T. M. Kuan, L. G. Wu, C. C. Huang, S. I. Peng, and C. Y. Yu,“Optimized back side process for high performance mono silicon PERC solar
cells,”Photovoltaic Specialists Conference, pp.2928-2930, 2016.
[11] Jan Schmidt ,Mark ,and Andres Cuevas,“Surface passivation of silicon solar cells using plasma-enhanced chemical-vapor-deposited SiN films and thin thermal SiO2/plasma SiN stacks,”Semiconductor Science and Technology, vol.16, pp164-170,2001.
[12] Marc Hofmann, Stephan Kambor, Christian Schmidt, Dieter Grambole, Jochen
Rentsch, Stefan Glum, and Ralf Preu,“Firing stable surface passivation using
All-PECVD stacks of SiOx-H and SiNx-H,”22nd European Photovoltaic Solar Energy Conference and Exhibition, pp.1030-1033, 2007.
[13] I. Martin. M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla“Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films,”Applied Physics Letters, vol. 79,pp. 2199-2201, 2001.
[14] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M.
M. Kessels,“Surface passivation of high-efficiency silicon solar cells by atomic-
layer-deposited Al2O3,”Progress in Photovoltaics: Research and Applications,
vo1.16, pp. 461-466, 2008.
[15] Hoex, B., et al., “ Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3, ”Applied Physics Letters, vo1.91, pp.107-112, 2007.
[16] Wei Wang, Jian Sheng, Sheng Zhao Yuanyuan Zhang, Wenhao Cai, Yifeng Chen, Chun Zhang, Zhiqiang Feng, and Pierre J. Verlinden, “Industrial screen-printed n-typer rear-junction solar cells with 20.6% efficiency,” IEEE Journal of Photovoltaics, vol.5, pp.1245-1249, 2015.
[17] 曹天相,背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究,國立清華大學光電工程研究所碩士論文,2015.
[18] http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/ch ap8semicon/semi
cond.pdf?fbclid=IwAR0UgwtiQ9HXLRiDb3inqzSgNATzyEHZ4XYAQEgMPrsJQgNUPbXR JhGpfr4
[19] http://www2.nsysu.edu.tw/physdemo-kh/2012/E4/E4.php
[20] https://zh.wikipedia.org
[21] 盧廷昌,王興宗,半導體雷射導論,五南圖書,2008.
[22] B.E.A Saleh , M.C Teich , Fundamental of photonics, second edition, Wiley Series in Pure and Applied Optics.
[23] https://ee.ntu.edu.tw/upload/hischool/doc/2012.05.pdf
[24] https://zh.wikipedia.org/wiki/%E5%A4%A9%E7%A9%BA%E6%BC%AB%
E5%B0%84
[25] https://www.newport.com/t/introduction-to-solar-radiation
[26] http://ir.lib.nchu.edu.tw/bitstream/11455/91863/1/nchu-103-5098076006- 1.pdf
[27] http://forum.netcontrol.tw/viewtopic.php?f=92&t=10810
[28] http://html.rhhz.net/BJHKHTDXXBZRB/20170710.htm.
[29] 黃昱仁,以濕式化學生長氯化鋁於背表面製作局部接觸鈍化結構之多晶矽太陽能電池之研究,國立清華大學光電工程研究所碩士論文,2017.
[30] Kimoto, K., et al., “ Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures, ”Applied Physics Letters,83(21): pp. 4306-4308 , 2003.
[31] Saint-Cast, P., et al., “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide, ” IEEE Electron Device Letters, vol.31,
p. 695-697, 2010.
[32] Hoex, B., et al., “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3, ” Applied Physics Letters, vol.89, pp.042112,2006.
[33] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf ,and G. Beaucarne, “Very low surface recombination vlocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Solar Energy Materials & Solar Cells, vol.90, pp. 3438-3443, 2006.
[34] Matsunaga. K., et al., “ First-principles calculations of intrinsic defects,in Al2O3,” Physical Review B, vol.68, pp.085110, 2003.
[35] Shreesh Narasimha and Ajeet Rohatgi, “ An optimized rapid aluminum back surface field technique for silicon solar cells,” IEEE Transactions on Electron Devices, vol.46,pp.1363-1370, 1999.
[36] www.ndl.org.tw/docs/devices/CF/T21_E_2.doc
[37] http://www.sintoninstruments.com/Sinton-Instruments-WCT-120.html
[38] Ronadl .A. Sinton, “Quasi-steady-state photoconductance,a new method for solar cell material and device characterization,” 25th PVSC, IEEE, pp.457-460, 1996.
[39] http://www.perkinelmer.com/cmsresources/images/44-74448bro_lambda.pdf
[40] http://oplab.ipt.nthu.edu.tw/main/node/32
[41] Andrea Ehrmann and Tomasz Blachowicz, “Examination of textiles with
mathematical and physical methods,” Springer, pp.20-27, 2016.
[42] http://four-point-probes.com/images/figure1.gif
[43] http://images.caeonline.com/im.php?id=406783
[44] https://www.newport.com/f/class-aaa-solar-simulators
[45] http://www.ndl.org.tw/NdlUC/Intro-NM001.aspx
[46] http://www.nfc.nctu.edu.tw/mechine_new/mechine/Wet%20Bench.htm
[47] 國立清華大學光電所王立康教授手記
[48] Duerinckx.F. and J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, vol.72, pp.231-246, 2002.
[49] G. A. Aberle, “ Surface passivation of crystalline silicon solar cells: a review,”
Progress in Photovoltaics: Research and Applications, vol.8, pp.473-487, 2000.