研究生: |
吳哲亞 Wu, Che-Ya |
---|---|
論文名稱: |
利用表面改質及摻雜技術應用於提升鋰離子電池材料循環穩定性及快速充放電能力 Surface Modification and Doping Techniques Applied in Lithium-ion Battery to Improve Cycle Stability and High-rate Capability |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
黃炳照
Hwang, Bing-Joe 呂福興 Lu, Fu-Hsing 林姿瑩 Lin, Tzu-Ying 葉哲寧 Yeh, Che-Ning 蕭立殷 Hsiao, Li-Yin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 227 |
中文關鍵詞: | 鋰離子電池 、正極材料 、負極材料 、表面改質 |
外文關鍵詞: | Lithium-ion Battery, Cathode Material, Anode Material, Surface Modification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人們對於能源的需求提升及環保意識的抬頭,儲能成為重要的課題,而在儲能的各種方法中,鋰離子電池展現高能量密度及高循環壽命的特性,被廣泛應用在電動車及儲能系統中。然而,為了使電池壽命進一步提升,參雜及表面改質等技術必須使用於鋰離子電池材料的改質中,在本論文中,透過不同的製程方法來提供提升鋰離子電池材料之性能。
在正極材料方面,本研究提出硼摻雜鎳鈷錳三元氧化物層狀材料,透過共沉澱法進行材料的合成,再透過硼酸的添加,來進行硼參雜,研究發現硼參雜會影響(003)的面間距,進而透過充放電的結構穩定性來提升電化學穩定性,另外在參雜後的粉末還提升快速充放電能力,可得知藉由硼元素進行參雜能有效的改善鎳鈷錳層狀氧化物的性能。
在負極方面可分成兩部分,包含高能量密度之合金型材料開發及快充鈦基材料開發,在合金型材料開發中,本研究提出形貌控制、表面碳批覆及結構設計等手法來緩解合金型材料充放電時所遇到的體積膨脹之問題,可以得到更高循環壽命之材料,而在經過碳複合材料添加後,材料快速充放電的能力也能進一步大幅提升。快充鈦基材料開發中,更進一步導入大氣電漿表面處理技術,透過大氣電漿對電極進行直接處理,探討電極內導電碳、黏結劑及活性物的改變。結果發現大氣電漿可以使導電碳進行氮元素摻雜、黏結劑官能基修飾及活性物氧空缺製造,透過這些手法的改質材料皆能提升鋰離子電池材料之充放電穩定性及快速充放電能力。
在本論文中提出多種有效之材料改質手法應用在鋰離子電池材料中,在鋰離子電池材料製備中,元素摻雜及表面改質技術能大幅度提升鋰離子電池的穩定性。總而言之,本論文嘗試多種不同的合成及改質技術,包含水熱法、共沉澱法、氣相沉積聚合、冷凍乾燥與大氣電漿等,來提升鋰離子電池正負極材料的穩定性及快充能力。
In recent years, energy storage becomes a vital issue due to the demand of energy increasing and the awareness of carbon emissions reduction. Among all the energy storage system, lithium-ion batteries demonstrate high specific capacity and cycle stability. Consequently, lithium-ion batteries are applied in the field of electric vehicles and energy storage station. Nonetheless, doping and surface modification technologies should be applied in the materials treatment to further improve the cycle life and rate capability of the cell. In this thesis, various of fabrication methods are promoted to improve the electrochemical performance of lithium-ion batteries.
In cathode materials, boron-doped NMC811 layer-type cathode material is proposed. NMC811 is fabricated by co-precipitate method, and boric acid is added as the precursor of boron. It is found that the adding of boron element influences the (003) d spacing, and the structure stability during charging and discharging, enhancing the cycle stability. Moreover, the changing of the d spacing also improve the high-rate capability of the NMC811 materials. It is confirmed that the NMC811 materials can be better improved via boron-doping technique.
Studies on anode materials part can be divided into two parts, including alloy-type materials with high capacity and Ti-based with fast charging capability materials. In the development of alloy-type materials, morphology control, surface carbon coating, and structure design are promoted to resolve the volume expansion during charging and discharging. It is found that these strategies effectively improve the cycle stability of the materials. Moreover, the carbon composite design also enhances the high-rate capability of the alloy-type materials. On the other hand, Ti-based materials is modified through the treatment of atmospheric pressure plasma jet. In this study, electrode is directly treated with the plasma jet, and the changing of active materials, conductive carbon, and binder is characterized. The results demonstrate that the treatment of atmospheric pressure plasma jet induce N-doped carbon, oxygen vacancy in TiNb2O7 material, and functionalized PVDF binder. All these variations improve the performance of the cell, including cycle stability and high-rate capability.
In this thesis, various strategies are proposed to be applied to the improvement of lithium-ion batteries materials. In the fabrication process of materials in lithium-ion batteries, element doping, and surface modification play the most important roles to improve the stability and high-rate capability of the lithium-ion batteries. In this thesis, various techniques via hydrothermal method, co-precipitate method, vapor deposition polymerization, freeze-drying process, and atmospheric pressure plasma jet techniques are adopted to enhance the electrochemical performance of lithium-ion batteries.
[1] R.A. Begum, K. Sohag, S.M.S. Abdullah, M. Jaafar, CO2 emissions, energy consumption, economic and population growth in Malaysia, Renewable and Sustainable Energy Reviews, 41 (2015) 594-601.
[2] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources, 195 (2010) 2419-2430.
[3] H.M. Ali, Thermal management systems for batteries in electric vehicles: A recent review, Energy Reports, 9 (2023) 5545-5564.
[4] G.E. Blomgren, The Development and Future of Lithium Ion Batteries, Journal of The Electrochemical Society, 164 (2017) A5019-A5025.
[5] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264.
[6] J.B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc Chem Res, 46 (2013) 1053-1061.
[7] M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192 (1976) 1126-1127.
[8] P.C.J. K. Mizushima, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin, 15 (1980) 783-789.
[9] J. Tollefson, Charging up the future: a new generation of lithium-ion batteries, coupled with rising oil prices and the need to address climate change, has sparked a global race to electrify transportation, Nature, 456 (2008) 436-441.
[10] A. Manthiram, An Outlook on Lithium Ion Battery Technology, ACS Cent Sci, 3 (2017) 1063-1069.
[11] L.A.d.P. M.M. Thackeray, A. de Kock, P.J. Johnson, V.A. Nicholas, K.T. Adendorff, Spinel electrodes for lithium batteries — A review, Journal of Power Sources, 21 (1987) 1-8.
[12] M.M. Thackeray, Manganese oxides for lithium batteries, Progress in Solid State Chemistry, 25 (1997) 1-71.
[13] M.M. Thackeray, Spinel Electrodes for Lithium Batteries, Journal of the American Ceramic Society, 82 (2004) 3347-3354.
[14] N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 15947-15957.
[15] P.J.J. M.M. Thackeray, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Electrochemical extraction of lithium from LiMn2O4, Materials Research Bulletin, 19 (1984) 179-187.
[16] M.M.T. W.I.F. David, L.A. De Picciotto, J.B. Goodenough, Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4, Journal of Solid State Chemistry, 67 (1987) 316-323.
[17] L. Yunjian, L. Xinhai, G. Huajun, W. Zhixing, H. Qiyang, P. Wenjie, Y. Yong, Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature, Journal of Power Sources, 189 (2009) 721-725.
[18] A.K.P. K.S. Nanjundaswamy , J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. YamakI, Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds, Solid State Ionics, 92 (1996) 1-10.
[19] W.-J. Zhang, Structure and performance of LiFePO4 cathode materials: A review, Journal of Power Sources, 196 (2011) 2962-2970.
[20] J. Li, W. Yao, S. Martin, D. Vaknin, Lithium ion conductivity in single crystal LiFePO4, Solid State Ionics, 179 (2008) 2016-2019.
[21] C.M. E. Peled, D. Bar‐Tow and A. Melman, Improved Graphite Anode for Lithium-Ion Batteries, Journal of The Electrochemical Society, 143 (1996) L4-L7.
[22] H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Materials, 36 (2021) 147-170.
[23] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105 (2016) 52-76.
[24] Y. Qi, H. Guo, L.G. Hector, A. Timmons, Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation, Journal of The Electrochemical Society, 157 (2010) A558.
[25] B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives, Materials Science and Engineering: R: Reports, 98 (2015) 1-71.
[26] J.-F. Colin, V. Godbole, P. Novák, In situ neutron diffraction study of Li insertion in Li4Ti5O12, Electrochemistry Communications, 12 (2010) 804-807.
[27] A.U. Tsutomu Ohzuku, and Norihiro Yamamoto, Zero‐Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells, Journal of The Electrochemical Society, 142 (1995) 1431-1435.
[28] M. Wagemaker, D.R. Simon, E.M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lützenkirchen‐Hecht, R. Frahm, F.M. Mulder, A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12, Advanced Materials, 18 (2006) 3169-3173.
[29] M.-S. Song, R.-H. Kim, S.-W. Baek, K.-S. Lee, K. Park, A. Benayad, Is Li4Ti5O12a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12electrode and electrolyte, J. Mater. Chem. A, 2 (2014) 631-636.
[30] T.D. Bogart, A.M. Chockla, B.A. Korgel, High capacity lithium ion battery anodes of silicon and germanium, Current Opinion in Chemical Engineering, 2 (2013) 286-293.
[31] K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao, M. Cai, Z. Chen, Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications, Small, 14 (2018).
[32] W. Li, X. Sun, Y. Yu, Si‐, Ge‐, Sn‐Based Anode Materials for Lithium‐Ion Batteries: From Structure Design to Electrochemical Performance, Small Methods, 1 (2017).
[33] M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv Mater, 25 (2013) 4966-4985.
[34] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review, Advanced Energy Materials, 4 (2013).
[35] X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms, Energy Storage Materials, 30 (2020) 146-169.
[36] A.A. Benjamin Hertzberg, Gleb Yushin, Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space, Journal of the American Chemical Society, 132 (2010) 8548-8549.
[37] Y.Z. Xianjun Zhu, Shanthi Murali, Meryl D. Stoller, and Rodney S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries, ACS nano, 5 (2011) 3333-3338.
[38] Y. Liu, X. Zhao, F. Li, D. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries, Electrochimica Acta, 56 (2011) 6448-6452.
[39] Z. Li, Y. Mao, Q. Tian, W. Zhang, L. Yang, Extremely facile preparation of high-performance Fe2O3 anode for lithium-ion batteries, Journal of Alloys and Compounds, 784 (2019) 125-133.
[40] M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, 5 (2012) 7854.
[41] X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries, Energy & Environmental Science, 11 (2018) 527-543.
[42] D.G.a.G.A. E. Peled, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, Journal of The Electrochemical Society, 144 (1997) L208.
[43] A.Z. Doron Aurbach , Yosef Gofer , Yair Ein Ely , Idit Weissman , Orit Chusid , Oleg Abramson Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems, Journal of Power Sources, 54 (1995) 76-84.
[44] I.W. D. Aurbach, A. Zaban, O. Chusid, Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts, Electrochimica Acta, 39 (1994) 51-71.
[45] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016).
[46] C.D. Quilty, P.J. West, G.P. Wheeler, L.M. Housel, C.J. Kern, K.R. Tallman, L. Ma, S. Ehrlich, C. Jaye, D.A. Fischer, K.J. Takeuchi, D.C. Bock, A.C. Marschilok, E.S. Takeuchi, Elucidating Cathode Degradation Mechanisms in LiNi0.8Mn0.1Co0.1O2 (NMC811)/Graphite Cells Under Fast Charge Rates Using Operando Synchrotron Characterization, Journal of The Electrochemical Society, 169 (2022) 020545.
[47] J.N.R.a.J.R.D. W. Li, In situ X-ray diffraction and electrochemical studies of Li1-xNiO2, Solid State Ionics, 67 (1993) 123-130.
[48] N.Z. Hongyang Li, Jing Li, and J. R. Dahn, Updating the Structure and Electrochemistry of LixNiO2 for 0 ≤ x ≤ 1, Journal of The Electrochemical Society, 165 (2018) A2985-A2993.
[49] J. Zheng, Y. Ye, T. Liu, Y. Xiao, C. Wang, F. Wang, F. Pan, Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control, Acc Chem Res, 52 (2019) 2201-2209.
[50] J. Zheng, G. Teng, C. Xin, Z. Zhuo, J. Liu, Q. Li, Z. Hu, M. Xu, S. Yan, W. Yang, F. Pan, Role of Superexchange Interaction on Tuning of Ni/Li Disordering in Layered Li(Ni(x)Mn(y)Co(z))O(2), J Phys Chem Lett, 8 (2017) 5537-5542.
[51] D. Wang, R. Kou, Y. Ren, C.J. Sun, H. Zhao, M.J. Zhang, Y. Li, A. Huq, J.Y.P. Ko, F. Pan, Y.K. Sun, Y. Yang, K. Amine, J. Bai, Z. Chen, F. Wang, Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes, Adv Mater, 29 (2017).
[52] D.P. Abraham, R.D. Twesten, M. Balasubramanian, J. Kropf, D. Fischer, J. McBreen, I. Petrov, K. Amine, Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells, Journal of The Electrochemical Society, 150 (2003) A1450.
[53] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, 208 (2012) 210-224.
[54] H.-J. Noh, S. Youn, C.S. Yoon, Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, Journal of Power Sources, 233 (2013) 121-130.
[55] S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, K.W. Nam, Structural changes and thermal stability of charged LiNixMnyCozO(2) cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy, ACS Appl Mater Interfaces, 6 (2014) 22594-22601.
[56] K. Märker, P.J. Reeves, C. Xu, K.J. Griffith, C.P. Grey, Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes during Electrochemical Cycling, Chemistry of Materials, 31 (2019) 2545-2554.
[57] S.S. Shishvan, N.A. Fleck, R.M. McMeeking, V.S. Deshpande, Cracking and associated volumetric expansion of NMC811 secondary particles, Journal of Power Sources, 588 (2023) 233745.
[58] H.C.W. Parks, A.M. Boyce, A. Wade, T.M.M. Heenan, C. Tan, E. Martínez-Pañeda, P.R. Shearing, D.J.L. Brett, R. Jervis, Direct observations of electrochemically induced intergranular cracking in polycrystalline NMC811 particles, Journal of Materials Chemistry A, 11 (2023) 21322-21332.
[59] Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat Mater, 11 (2012) 942-947.
[60] X. Xu, L. Xiang, L. Wang, J. Jian, C. Du, X. He, H. Huo, X. Cheng, G. Yin, Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries, Journal of Materials Chemistry A, 7 (2019) 7728-7735.
[61] G. Chen, G. Qian, G. Zan, M. Lun, F. Su, B. Stripe, Y.S. Chu, P. Pianetta, X. Huang, J. Li, Stabilizing Ni-rich layered cathode for high-voltage operation through hierarchically heterogeneous doping with concentration gradient, Materials Today Chemistry, 35 (2024) 101845.
[62] W. Cho, S.-M. Kim, J.H. Song, T. Yim, S.-G. Woo, K.-W. Lee, J.-S. Kim, Y.-J. Kim, Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating, Journal of Power Sources, 282 (2015) 45-50.
[63] L. Liang, G. Hu, F. Jiang, Y. Cao, Electrochemical behaviours of SiO 2 -coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials by a novel modification method, Journal of Alloys and Compounds, 657 (2016) 570-581.
[64] K. Meng, Z. Wang, H. Guo, X. Li, D. Wang, Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3, Electrochimica Acta, 211 (2016) 822-831.
[65] S. Dai, G. Yan, L. Wang, L. Luo, Y. Li, Y. Yang, H. Liu, Y. Liu, M. Yuan, Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating, Journal of Electroanalytical Chemistry, 847 (2019) 113197.
[66] K. Wang, Q. Mao, X. Lu, J. Zhang, H. Huang, Y. Gan, X. He, X. Xia, W. Zhang, Y. Xia, Fluorides coated Ni-rich cathode materials with enhanced surficial chemical stability for advanced lithium-ion battery, Sustainable Materials and Technologies, 38 (2023) e00713.
[67] M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, J. Cho, Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries, Nature Energy, 6 (2021) 362-371.
[68] Y. Jing, Y. Shao, H.L. Xin, On The Efficacy of Cobalt Boride Coating on NMC-811 Cathode Under Vinylene Carbonate Additive, High Temperature and Air Shelving Conditions, Journal of The Electrochemical Society, 170 (2023) 010519.
[69] Y. Zhang, Z.-B. Wang, F.-D. Yu, L.-F. Que, M.-J. Wang, Y.-F. Xia, Y. Xue, J. Wu, Studies on stability and capacity for long-life cycle performance of Li(Ni 0.5 Co 0.2 Mn 0.3 )O 2 by Mo modification for lithium-ion battery, Journal of Power Sources, 358 (2017) 1-12.
[70] R. Du, Y. Bi, W. Yang, Z. Peng, M. Liu, Y. Liu, B. Wu, B. Yang, F. Ding, D. Wang, Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5V, Ceramics International, 41 (2015) 7133-7139.
[71] S. Gao, X. Zhan, Y.-T. Cheng, Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries, Journal of Power Sources, 410-411 (2019) 45-52.
[72] M.C. Hongyang Li, Ning Zhang, Julie Inglis, Jing Li, and J. R. Dahn, Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?, Journal of The Electrochemical Society, 166 (2019) A429-A439.
[73] H. Kondo, Y. Takeuchi, T. Sasaki, S. Kawauchi, Y. Itou, O. Hiruta, C. Okuda, M. Yonemura, T. Kamiyama, Y. Ukyo, Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance, Journal of Power Sources, 174 (2007) 1131-1136.
[74] X. Liu, S. Wang, L. Wang, K. Wang, X. Wu, P. Zhou, Z. Miao, J. Zhou, Y. Zhao, S. Zhuo, Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping, Journal of Power Sources, 438 (2019) 227017.
[75] Z. Tang, J. Bao, Q. Du, Y. Shao, M. Gao, B. Zou, C. Chen, Surface Surgery of the Nickel-Rich Cathode Material LiNi(0.815)Co(0.15)Al(0.035)O(2): Toward a Complete and Ordered Surface Layered Structure and Better Electrochemical Properties, ACS Appl Mater Interfaces, 8 (2016) 34879-34887.
[76] M.A. Rahman, G. Song, A.I. Bhatt, Y.C. Wong, C. Wen, Nanostructured Silicon Anodes for High‐Performance Lithium‐Ion Batteries, Advanced Functional Materials, 26 (2015) 647-678.
[77] Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium‐Ion Battery, Advanced Energy Materials, 7 (2017).
[78] R.A.H. C. John Wen, Chemical diffusion in intermediate phases in the lithium-silicon system, Journal of Solid State Chemistry, 37 (1981) 271-278.
[79] J. Li, J.R. Dahn, An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si, Journal of The Electrochemical Society, 154 (2007) A156.
[80] L. Luo, J. Wu, J. Luo, J. Huang, V.P. Dravid, Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM, Sci Rep, 4 (2014) 3863.
[81] L.Z. Xiao Hua Liu, Shan Huang Scott X. Mao, Ting Zhu§*, and Jian Yu Huang†*, Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, 6 (2012) 1522-1531.
[82] T. Li, X. Zhou, Y. Cui, C. Lim, H. Kang, B. Yan, J. Wang, J. Wang, Y. Fu, L. Zhu, Characterization of dynamic morphological changes of tin anode electrode during (de)lithiation processes using in operando synchrotron transmission X-ray microscopy, Electrochimica Acta, 314 (2019) 212-218.
[83] S.-C. Chao, Y.-F. Song, C.-C. Wang, H.-S. Sheu, H.-C. Wu, N.-L. Wu, Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy, The Journal of Physical Chemistry C, 115 (2011) 22040-22047.
[84] F. Shi, Z. Song, P.N. Ross, G.A. Somorjai, R.O. Ritchie, K. Komvopoulos, Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries, Nat Commun, 7 (2016) 11886.
[85] B. Ding, H. Wu, Z. Xu, X. Li, H. Gao, Stress effects on lithiation in silicon, Nano Energy, 38 (2017) 486-493.
[86] H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat Nanotechnol, 7 (2012) 310-315.
[87] Y. Zhang, N. Du, D. Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries, Nanoscale, 11 (2019) 19086-19104.
[88] Y. Jin, N.H. Kneusels, L.E. Marbella, E. Castillo-Martinez, P. Magusin, R.S. Weatherup, E. Jonsson, T. Liu, S. Paul, C.P. Grey, Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy, J Am Chem Soc, 140 (2018) 9854-9867.
[89] Q. Li, X. Liu, X. Han, Y. Xiang, G. Zhong, J. Wang, B. Zheng, J. Zhou, Y. Yang, Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive, ACS Appl Mater Interfaces, 11 (2019) 14066-14075.
[90] W. Kohn, Shallow Impurity States in Silicon and Germanium, 5 (1957) 257-320.
[91] F. Ozanam, M. Rosso, Silicon as anode material for Li-ion batteries, Materials Science and Engineering: B, 213 (2016) 2-11.
[92] H.-J. Shin, J.-Y. Hwang, H.J. Kwon, W.-J. Kwak, S.-O. Kim, H.-S. Kim, H.-G. Jung, Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode, ACS Sustainable Chemistry & Engineering, 8 (2020) 14150-14158.
[93] S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu, L. Zhang, W. Lu, B. Zhao, Z. Zhang, Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery, ACS Appl Mater Interfaces, 10 (2018) 44924-44931.
[94] R.N.P. Candace K. Chan, Michael J. O’Connell, Brian A. Korgel, and Yi Cui, Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes, ACS Nano, 4 (2010) 1443-1450.
[95] J. Nzabahimana, Z. Liu, S. Guo, L. Wang, X. Hu, Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching, ChemSusChem, 13 (2020) 1923-1946.
[96] H. Liu, Z. Shan, W. Huang, D. Wang, Z. Lin, Z. Cao, P. Chen, S. Meng, L. Chen, Self-Assembly of Silicon@Oxidized Mesocarbon Microbeads Encapsulated in Carbon as Anode Material for Lithium-Ion Batteries, ACS Appl Mater Interfaces, 10 (2018) 4715-4725.
[97] L. Zong, Y. Jin, C. Liu, B. Zhu, X. Hu, Z. Lu, J. Zhu, Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes, Nano Lett, 16 (2016) 7210-7215.
[98] W. He, H. Tian, F. Xin, W. Han, Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries, Journal of Materials Chemistry A, 3 (2015) 17956-17962.
[99] Q. Liu, Y. Ji, X. Yin, J. Li, Y. Liu, X. Hu, Z. Wen, Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries, Energy Storage Materials, 46 (2022) 384-393.
[100] S. Mei, W. An, J. Fu, W. Guo, X. Feng, X. Li, B. Gao, X. Zhang, K. Huo, P.K. Chu, Hierarchical micro-flowers self-assembled from SnS monolayers and nitrogen-doped graphene lamellar nanosheets as advanced anode for lithium-ion battery, Electrochimica Acta, 331 (2020) 135292.
[101] Y. Zhang, N. Wang, Z. Lu, P. Xue, Y. Liu, Y. Zhai, B. Tang, M. Guo, L. Qin, Z. Bai, Hierarchical assembly and superior lithium/sodium storage properties of a flowerlike C/SnS@C nanocomposite, Electrochimica Acta, 296 (2019) 891-900.
[102] R.K. Mishra, G.W. Baek, K. Kim, H.-I. Kwon, S.H. Jin, One-step solvothermal synthesis of carnation flower-like SnS 2 as superior electrodes for supercapacitor applications, Applied Surface Science, 425 (2017) 923-931.
[103] H. Wang, X. Jiang, Y. Chai, X. Yang, R. Yuan, Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries, Journal of Power Sources, 379 (2018) 191-196.
[104] A. Bhaskar, M. Deepa, T.N. Rao, Size-controlled SnO(2) hollow spheres via a template free approach as anodes for lithium ion batteries, Nanoscale, 6 (2014) 10762-10771.
[105] Y. Chen, Q.Z. Huang, J. Wang, Q. Wang, J.M. Xue, Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications, Journal of Materials Chemistry, 21 (2011) 17448.
[106] J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, L. Liao, Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, Journal of Materials Chemistry, 19 (2009) 1859.
[107] J. Zhou, T. Qian, M. Wang, N. Xu, Q. Zhang, Q. Li, C. Yan, Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries, ACS Appl Mater Interfaces, 8 (2016) 5358-5365.
[108] W. Wang, Y. Wang, L. Gu, R. Lu, H. Qian, X. Peng, J. Sha, SiC@Si core–shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries, Journal of Power Sources, 293 (2015) 492-497.
[109] N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nat Nanotechnol, 9 (2014) 187-192.
[110] X. Shen, Z. Tian, R. Fan, L. Shao, D. Zhang, G. Cao, L. Kou, Y. Bai, Research progress on silicon/carbon composite anode materials for lithium-ion battery, Journal of Energy Chemistry, 27 (2018) 1067-1090.
[111] W. Sun, R. Hu, M. Zhang, J. Liu, M. Zhu, Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries, Journal of Power Sources, 318 (2016) 113-120.
[112] M. Fang, Z. Wang, X. Chen, S. Guan, Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries, Applied Surface Science, 436 (2018) 345-353.
[113] C. Botas, D. Carriazo, W. Zhang, T. Rojo, G. Singh, Silicon-Reduced Graphene Oxide Self-Standing Composites Suitable as Binder-Free Anodes for Lithium-Ion Batteries, ACS Appl Mater Interfaces, 8 (2016) 28800-28808.
[114] W. Zhang, P. Zuo, C. Chen, Y. Ma, X. Cheng, C. Du, Y. Gao, G. Yin, Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries, Journal of Power Sources, 312 (2016) 216-222.
[115] K. Feng, W. Ahn, G. Lui, H.W. Park, A.G. Kashkooli, G. Jiang, X. Wang, X. Xiao, Z. Chen, Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes, Nano Energy, 19 (2016) 187-197.
[116] L. Xiao, Y.H. Sehlleier, S. Dobrowolny, H. Orthner, F. Mahlendorf, A. Heinzel, C. Schulz, H. Wiggers, Si–CNT/rGO Nanoheterostructures as High‐Performance Lithium‐Ion‐Battery Anodes, ChemElectroChem, 2 (2015) 1983-1990.
[117] Q. Xiao, Y. Fan, X. Wang, R.A. Susantyoko, Q. Zhang, A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity, Energy Environ. Sci., 7 (2014) 655-661.
[118] C. Martin, O. Crosnier, R. Retoux, D. Bélanger, D.M. Schleich, T. Brousse, Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium‐Ion Batteries, Advanced Functional Materials, 21 (2011) 3524-3530.
[119] P. Fan, T. Mu, S. Lou, X. Cheng, Y. Gao, C. Du, P. Zuo, Y. Ma, G. Yin, Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries, Electrochimica Acta, 306 (2019) 590-598.
[120] X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Self‐Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium‐Ion Batteries, Advanced Energy Materials, 2 (2012) 1086-1090.
[121] P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly, Nature, 451 (2008) 977-980.
[122] C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat Chem, 5 (2013) 1042-1048.
[123] Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, S.-i. Hirano, Silicon Microparticle Anodes with Self-Healing Multiple Network Binder, Joule, 2 (2018) 950-961.
[124] G. Zhang, Y. Yang, Y. Chen, J. Huang, T. Zhang, H. Zeng, C. Wang, G. Liu, Y. Deng, A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries, Small, (2018) e1801189.
[125] T. Munaoka, X. Yan, J. Lopez, J.W.F. To, J. Park, J.B.H. Tok, Y. Cui, Z. Bao, Ionically Conductive Self‐Healing Binder for Low Cost Si Microparticles Anodes in Li‐Ion Batteries, Advanced Energy Materials, 8 (2018).
[126] T.-w.K. Sunghun Choi, Ali Coskun, Jang Wook Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 357 (2017) 279-283.
[127] J.-T. Han, J.B. Goodenough, 3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4, Chemistry of Materials, 23 (2011) 3404-3407.
[128] J.-T. Han, Y.-H. Huang, J.B. Goodenough, New Anode Framework for Rechargeable Lithium Batteries, Chemistry of Materials, 23 (2011) 2027-2029.
[129] B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao, J. Liu, Y.-S. Hu, X.-Q. Yang, J.B. Goodenough, S. Dai, A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage, Energy Environ. Sci., 7 (2014) 2220-2226.
[130] K.J. Griffith, I.D. Seymour, M.A. Hope, M.M. Butala, L.K. Lamontagne, M.B. Preefer, C.P. Kocer, G. Henkelman, A.J. Morris, M.J. Cliffe, S.E. Dutton, C.P. Grey, Ionic and Electronic Conduction in TiNb(2)O(7), J Am Chem Soc, 141 (2019) 16706-16725.
[131] K. Ise, S. Morimoto, Y. Harada, N. Takami, Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries, Solid State Ionics, 320 (2018) 7-15.
[132] V. Paulraj, T. Saha, K. Vediappan, K. Kamala Bharathi, Synthesis and electrochemical properties of TiNb2O7 nanoparticles as an anode material for lithium ion batteries, Materials Letters, 304 (2021) 130681.
[133] Q. Cheng, J. Liang, N. Lin, C. Guo, Y. Zhu, Y. Qian, Porous TiNb2O7 Nanospheres as ultra Long-life and High-power Anodes for Lithium-ion Batteries, Electrochimica Acta, 176 (2015) 456-462.
[134] S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao, Y. Ma, C. Du, G. Yin, X. Sun, Superior performance of ordered macroporous TiNb 2 O 7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability, Nano Energy, 34 (2017) 15-25.
[135] G. Zhu, Q. Li, R. Che, Hollow TiNb(2) O(7) @C Spheres with Superior Rate Capability and Excellent Cycle Performance as Anode Material for Lithium-Ion Batteries, Chemistry, 24 (2018) 12932-12937.
[136] J. Gao, X. Cheng, S. Lou, X. Wu, F. Ding, P. Zuo, Y. Ma, C. Du, Y. Gao, G. Yin, Surface nitrided and carbon coated TiNb2O7 anode material with excellent performance for lithium-ion batteries, Journal of Alloys and Compounds, 835 (2020) 155241.
[137] H. Lyu, J. Li, T. Wang, B.P. Thapaliya, S. Men, C.J. Jafta, R. Tao, X.-G. Sun, S. Dai, Carbon Coated Porous Titanium Niobium Oxides as Anode Materials of Lithium-Ion Batteries for Extreme Fast Charge Applications, ACS Applied Energy Materials, 3 (2020) 5657-5665.
[138] R. Qian, H. Lu, T. Yao, F. Xiao, J.-W. Shi, Y. Cheng, H. Wang, Hollow TiNb2O7 Nanospheres with a Carbon Coating as High-Efficiency Anode Materials for Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 10 (2021) 61-70.
[139] S. Li, X. Cao, C.N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, G. Cao, TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries, Journal of Materials Chemistry A, 4 (2016) 4242-4251.
[140] C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage, Electrochimica Acta, 260 (2018) 65-72.
[141] B. Niu, P. Zhao, S. Zhou, Q. Li, Q. Li, L. Wen, H. Liu, G. Liu, High-rate lithium storage of TiNb2O7/reduced graphene oxide, Ceramics International, 47 (2021) 1177-1183.
[142] P. Cui, P. Zhang, X. Chen, X. Chen, T. Wan, Y. Zhou, M. Su, Y. Liu, H. Xu, D. Chu, Oxygen Defect and Cl(-)-Doped Modulated TiNb(2)O(7) Compound with High Rate Performance in Lithium-Ion Batteries, ACS Appl Mater Interfaces, 15 (2023) 43745-43755.
[143] A. Shi, Y. Zhang, S. Geng, X. Song, G. Yin, S. Lou, L. Tan, Highly oxidized state dopant induced Nb-O bond distortion of TiNb2O7 for extremely fast-charging batteries, Nano Energy, 123 (2024) 109349.
[144] K. Tian, Z. Wang, H. Di, H. Wang, Z. Zhang, S. Zhang, R. Wang, L. Zhang, C. Wang, L. Yin, Superimposed Effect of La Doping and Structural Engineering to Achieve Oxygen-Deficient TiNb(2)O(7) for Ultrafast Li-Ion Storage, ACS Appl Mater Interfaces, 14 (2022) 10478-10488.
[145] Y. Zhang, M. Zhang, Y. Liu, H. Zhu, L. Wang, Y. Liu, M. Xue, B. Li, X. Tao, Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries, Electrochimica Acta, 330 (2020) 135299.
[146] W. Zhu, B. Zou, C. Zhang, D.H.L. Ng, S.A. El‐Khodary, X. Liu, G. Li, J. Qiu, Y. Zhao, S. Yang, J. Lian, H. Li, Oxygen‐Defective TiNb2O7‐x Nanochains with Enlarged Lattice Spacing for High‐Rate Lithium Ion Capacitor, Advanced Materials Interfaces, 7 (2020).
[147] Y.-R. Jhan, J.-G. Duh, S.-Y. Tsai, Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction, Diamond and Related Materials, 20 (2011) 413-417.
[148] Y.R. Jhan, J.G. Duh, Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction, Journal of Power Sources, 198 (2012) 294-297.
[149] Q. Bao, K.S. Hui, J.G. Duh, Promoting catalytic ozonation of phenol over graphene through nitrogenation and Co(3)O(4) compositing, J Environ Sci (China), 50 (2016) 38-48.
[150] Y.-H. Huang, Q. Bao, J.-G. Duh, C.-T. Chang, Top-down dispersion meets bottom-up synthesis: merging ultranano silicon and graphene nanosheets for superior hybrid anodes for lithium-ion batteries, Journal of Materials Chemistry A, 4 (2016) 9986-9997.
[151] Z.-Y. Wu, C.-Y. Wu, J.-G. Duh, Facile synthesis of boron-doped graphene-silicon conductive network composite from recycling silicon for Lithium-ion batteries anodes materials, Materials Letters, 296 (2021) 129875.
[152] C.-Y. Lin, J.-G. Duh, C.-H. Hsu, J.-M. Chen, LiNi0.5Mn1.5O4 cathode material by low-temperature solid-state method with excellent cycleability in lithium ion battery, Materials Letters, 64 (2010) 2328-2330.
[153] Y.-C. Jin, M.-I. Lu, T.-H. Wang, C.-R. Yang, J.-G. Duh, Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery, Journal of Power Sources, 262 (2014) 483-487.
[154] H. Yang, J.-G. Duh, Aqueous sol–gel synthesized anatase TiO2nanoplates with high-rate capabilities for lithium-ion and sodium-ion batteries, RSC Advances, 6 (2016) 37160-37166.
[155] Y. Wang, H. Yang, C.-Y. Wu, J.-G. Duh, Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries, Journal of Materials Chemistry A, 5 (2017) 18674-18683.
[156] Y.-S. Lin, M.-C. Tsai, J.-G. Duh, Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries, Journal of Power Sources, 214 (2012) 314-318.
[157] Y.-S. Lin, J.-G. Duh, Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries, Journal of Power Sources, 196 (2011) 10698-10703.
[158] C.-K. Lan, Q. Bao, Y.-H. Huang, J.-G. Duh, Embedding nano-Li4Ti5O12 in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials, Journal of Alloys and Compounds, 673 (2016) 336-348.
[159] H.-W. Chan, J.-G. Duh, H.-S. Sheu, In Situ Synchrotron X-Ray Diffraction Investigations of LiCu[sub x]Mn[sub 2−x]O[sub 4] Surface Coated LiMn[sub 2]O[sub 4] Spinel Cathode Material during Charge with Various Rates, Journal of The Electrochemical Society, 153 (2006) A1533.
[160] P.-Y. Liao, J.-G. Duh, H.-S. Sheu, Structural and thermal properties of LiNi0.6−xMgxCo0.25Mn0.15O2 cathode materials, Journal of Power Sources, 183 (2008) 766-770.
[161] Y.-R. Jhan, C.-Y. Lin, J.-G. Duh, Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability, Materials Letters, 65 (2011) 2502-2505.
[162] H. Yang, J.-G. Duh, H.-Y. Chen, Y. Wang, Synthesis and In-Situ Investigation of Olivine LiMnPO4 Composites Substituted with Tetravalent Vanadium in High-Rate Li-Ion Batteries, ACS Applied Energy Materials, 1 (2018) 6208-6216.
[163] H.-W. Chan, J.-G. Duh, S.-R. Sheen, Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery, Surface and Coatings Technology, 188-189 (2004) 116-119.
[164] T. Fang, J.-G. Duh, S.-R. Sheen, LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries, Thin Solid Films, 469-470 (2004) 361-365.
[165] J.-G.D. Yu-Sheng Lin, and Min-Hsiu Hung, Shell-by-Shell Synthesis and Applications of Carbon-Coated SnO2 Hollow Nanospheres in Lithium-Ion Battery, The Journal of Physical Chemistry C, 114 (2010) 13136–13141.
[166] H. Yang, Y. Wang, J.-G. Duh, Developing a Diamine-Assisted Polymerization Method To Synthesize Nano-LiMnPO4 with N-Doped Carbon from Polyamides for High-Performance Li-Ion Batteries, ACS Sustainable Chemistry & Engineering, 6 (2018) 13302-13311.
[167] C.-K. Lan, C.-C. Chang, C.-Y. Wu, B.-H. Chen, J.-G. Duh, Improvement of the Ar/N2 binary plasma-treated carbon passivation layer deposited on Li4Ti5O12 electrodes for stable high-rate lithium ion batteries, RSC Advances, 5 (2015) 92554-92563.
[168] C.-K. Lan, S.-I. Chuang, Q. Bao, Y.-T. Liao, J.-G. Duh, One-step argon/nitrogen binary plasma jet irradiation of Li4Ti5O12 for stable high-rate lithium ion battery anodes, Journal of Power Sources, 275 (2015) 660-667.
[169] H.Y. Hou Heng Lin, Che Ya Wu, Sheng Yu Hsu, and Jenq-Gong Duh, Atmospheric Pressure Plasma Jet Irradiation of N Doped Carbon Decorated on Li4Ti5O12 Electrode as a High Rate Anode Material for Lithium Ion Batteries, Journal of The Electrochemical Society, 166 (2019) A5146-A5152.
[170] C.-Y. Su, C.-Y. Wu, S.-Y. Hsu, C.-Y. Wu, J.-G. Duh, Improving the electrochemical performance of LiMn0.8Fe0.2PO4 cathode with nitrogen-doped carbon via dielectric barrier discharge plasma, Materials Letters, 272 (2020) 127880.
[171] H.H. Lim, B.A. Horri, B. Salamatinia, Synthesis and Characterizations of Nickel (II) Oxide Sub-Micro Rods via co-precipitation Methods, IOP Conference Series: Materials Science and Engineering, 398 (2018) 012033.
[172] G. Shao, X. Wu, Y. Kong, S. Cui, X. Shen, C. Jiao, J. Jiao, Thermal shock behavior and infrared radiation property of integrative insulations consisting of MoSi2/borosilicate glass coating and fibrous ZrO2 ceramic substrate, Surface and Coatings Technology, 270 (2015) 154-163.
[173] X. Zhang, W.J. Jiang, A. Mauger, Qilu, F. Gendron, C.M. Julien, Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material, Journal of Power Sources, 195 (2010) 1292-1301.
[174] M. Quesada-Gonzalez, N.D. Boscher, C.J. Carmalt, I.P. Parkin, Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition, ACS Appl Mater Interfaces, 8 (2016) 25024-25029.
[175] Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nano active materials for lithium-ion batteries, Nanoscale, 2 (2010) 1294-1305.
[176] J. Yang, Y. Xia, Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li2MnO3, ACS Appl Mater Interfaces, 8 (2016) 1297-1308.
[177] L.E.D. Jing Li, Lin Ma, Wenda Qiu, and J. R. Dahn, Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries, Journal of The Electrochemical Society, 162 (2015) A1401-A1408.
[178] J. Jang, J. Bae, Carbon nanofiber/polypyrrole nanocable as toxic gas sensor, Sensors and Actuators B: Chemical, 122 (2007) 7-13.
[179] P. Gahlout, V. Choudhary, Tailoring of polypyrrole backbone by optimizing synthesis parameters for efficient EMI shielding properties in X-band (8.2–12.4 GHz), Synthetic Metals, 222 (2016) 170-179.
[180] Y. Li, F. Jia, J. Qin, Brain tumor segmentation from multimodal magnetic resonance images via sparse representation, Artif Intell Med, 73 (2016) 1-13.
[181] M.M.R. M. Praveen Kumar, A. Arunchander, Subbulakshmi Selvaraj, Golap Kalita, Tharangattu N. Narayanan, A. K. Sahu, and Deepak K. Pattanayak, Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 163 (2016) F848-F855.
[182] R.-C. Chen, L.-Y. Hsiao, C.-Y. Wu, J.-G. Duh, Facile synthesizing silicon waste/carbon composites via rapid thermal process for lithium-ion battery anode, Journal of Alloys and Compounds, 791 (2019) 19-29.
[183] F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework, Nat Commun, 5 (2014) 5261.
[184] Z. Yao, X. Xia, Y. Zhang, D. Xie, C. Ai, S. Lin, Y. Wang, S. Deng, S. Shen, X. Wang, Y. Yu, J. Tu, Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell, Nano Energy, 54 (2018) 304-312.
[185] Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, J. Maier, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries, Angew Chem Int Ed Engl, 47 (2008) 1645-1649.
[186] C. Wang, F. Luo, H. Lu, X. Rong, B. Liu, G. Chu, Y. Sun, B. Quan, J. Zheng, J. Li, C. Gu, X. Qiu, H. Li, L. Chen, A Well-Defined Silicon Nanocone-Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries, ACS Appl Mater Interfaces, 9 (2017) 2806-2814.
[187] C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, Journal of Power Sources, 189 (2009) 1132-1140.
[188] C. Pereira-Nabais, J. Światowska, A. Chagnes, F. Ozanam, A. Gohier, P. Tran-Van, C.-S. Cojocaru, M. Cassir, P. Marcus, Interphase chemistry of Si electrodes used as anodes in Li-ion batteries, Applied Surface Science, 266 (2013) 5-16.
[189] K. Kang, H.-S. Lee, D.-W. Han, G.-S. Kim, D. Lee, G. Lee, Y.-M. Kang, M.-H. Jo, Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery, Applied Physics Letters, 96 (2010).
[190] M. Ghaderi, M. Mousavi, H. Yousefi, M. Labbafi, All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application, Carbohydr Polym, 104 (2014) 59-65.
[191] Y. Jiao, Y. Lu, K. Lu, Y. Yue, X. Xu, H. Xiao, J. Li, J. Han, Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application, J Colloid Interface Sci, 597 (2021) 171-181.
[192] M. Wang, R. Li, X. Feng, C. Dang, F. Dai, X. Yin, M. He, D. Liu, H. Qi, Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices, ACS Appl Mater Interfaces, 12 (2020) 27545-27554.
[193] M. Wang, C. Shao, S. Zhou, J. Yang, F. Xu, Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption, RSC Advances, 7 (2017) 38220-38230.
[194] X. Zhang, F. Lin, Q. Yuan, L. Zhu, C. Wang, S. Yang, Hydrogen-bonded thin films of cellulose ethers and poly(acrylic acid), Carbohydr Polym, 215 (2019) 58-62.
[195] W.-Y. Chung, S. Brahma, S.-C. Hou, C.-C. Chang, J.-L. Huang, Petroleum waste hydrocarbon resin as a carbon source modified on a Si composite as a superior anode material in lithium ion batteries, Materials Chemistry and Physics, 259 (2021) 124011.
[196] L. Zhang, C. Wang, Y. Dou, N. Cheng, D. Cui, Y. Du, P. Liu, M. Al-Mamun, S. Zhang, H. Zhao, A Yolk-Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries, Angew Chem Int Ed Engl, 58 (2019) 8824-8828.
[197] L.Y. Yang, H.Z. Li, J. Liu, Z.Q. Sun, S.S. Tang, M. Lei, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci Rep, 5 (2015) 10908.
[198] M. Naeem, M. Waqas, I. Jan, M. Zaka-ul-Islam, J.C. Díaz-Guillén, N.U. Rehman, M. Shafiq, M. Zakaullah, Influence of pulsed power supply parameters on active screen plasma nitriding, Surface and Coatings Technology, 300 (2016) 67-77.
[199] X.L. Deng, A.Y. Nikiforov, P. Vanraes, C. Leys, Direct current plasma jet at atmospheric pressure operating in nitrogen and air, Journal of Applied Physics, 113 (2013).
[200] Y. Akishev, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, Non-equilibrium constricted dc glow discharge in N2 flow at atmospheric pressure: stable and unstable regimes, Journal of Physics D: Applied Physics, 43 (2010) 075202.
[201] U. Lommatzsch, D. Pasedag, A. Baalmann, G. Ellinghorst, H.-E. Wagner, Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for Adhesion Improvement, Plasma Processes and Polymers, 4 (2007) S1041-S1045.
[202] M. Sutoh, Y. Morioka, M. Nakamura, Absolute rate constant for the chemiluminescent reaction of atomic oxygen with nitric oxide, The Journal of Chemical Physics, 72 (1980) 20-24.
[203] K. Khivantsev, J.H. Kwak, N.R. Jaegers, I.Z. Koleva, G.N. Vayssilov, M.A. Derewinski, Y. Wang, H.A. Aleksandrov, J. Szanyi, Identification of the mechanism of NO reduction with ammonia (SCR) on zeolite catalysts, Chem Sci, 13 (2022) 10383-10394.
[204] Y. Yang, F. Zheng, G. Xia, Z. Lun, Q. Chen, Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode, Journal of Materials Chemistry A, 3 (2015) 18657-18666.
[205] Z. Jiang, Z. Zeng, C. Yang, Z. Han, W. Hu, J. Lu, J. Xie, Nitrofullerene, a C(60)-based Bifunctional Additive with Smoothing and Protecting Effects for Stable Lithium Metal Anode, Nano Lett, 19 (2019) 8780-8786.
[206] A. Rudawska, E. Jacniacka, Analysis for determining surface free energy uncertainty by the Owen–Wendt method, International Journal of Adhesion and Adhesives, 29 (2009) 451-457.
[207] D.H. Jeon, Wettability in electrodes and its impact on the performance of lithium-ion batteries, Energy Storage Materials, 18 (2019) 139-147.
[208] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting, Journal of Materials Chemistry A, 1 (2013) 5766.
[209] L. Ren, M. Wang, S. Lu, L. Pan, Z. Xiong, Z. Zhang, Q. Peng, Y. Li, J. Yu, Tailoring Thermal Transport Properties of Graphene Paper by Structural Engineering, Sci Rep, 9 (2019) 4549.
[210] M. Mohammadi Ghaleni, A. Al Balushi, S. Kaviani, E. Tavakoli, M. Bavarian, S. Nejati, Fabrication of Janus Membranes for Desalination of Oil-Contaminated Saline Water, ACS Appl Mater Interfaces, 10 (2018) 44871-44879.
[211] I. Bertóti, M. Mohai, K. László, Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy, Carbon, 84 (2015) 185-196.
[212] F. He, B. Luo, S. Yuan, B. Liang, C. Choong, S.O. Pehkonen, PVDF film tethered with RGD-click-poly(glycidyl methacrylate) brushes by combination of direct surface-initiated ATRP and click chemistry for improved cytocompatibility, RSC Adv., 4 (2014) 105-117.
[213] N. Vandencasteele, D. Merche, F. Reniers, XPS and contact angle study of N2 and O2 plasma‐modified PTFE, PVDF and PVF surfaces, Surface and Interface Analysis, 38 (2006) 526-530.
[214] O. Rosseler, M. Sleiman, V.N. Montesinos, A. Shavorskiy, V. Keller, N. Keller, M.I. Litter, H. Bluhm, M. Salmeron, H. Destaillats, Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.), J Phys Chem Lett, 4 (2013) 536-541.
[215] D. Ye, Y. Yu, L. Liu, X. Lu, Y. Wu, Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties, Nanotechnology, 26 (2015) 495302.
[216] J. Baltrusaitis, P.M. Jayaweera, V.H. Grassian, XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions, Phys Chem Chem Phys, 11 (2009) 8295-8305.
[217] H. Park, H.B. Wu, T. Song, X.W. Lou, U. Paik, Porosity‐Controlled TiNb2O7 Microspheres with Partial Nitridation as A Practical Negative Electrode for High‐Power Lithium‐Ion Batteries, Advanced Energy Materials, 5 (2015).
[218] L.C. Zheng Shen, Christopher D. Rahn, and Chao-Yang Wang, Least Squares Galvanostatic Intermittent Titration Technique (LS-GITT) for Accurate Solid Phase Diffusivity Measurement, Journal of The Electrochemical Society, 160 (2013) A1842-A1846.
[219] Y. Yang, Z. Li, R. Zhang, Y. Ding, H. Xie, G. Liu, Y. Fan, Z. Yang, X. Liu, Polydopamine-derived N-doped carbon-coated porous TiNb2O7 microspheres as anode materials with superior rate performance for lithium-ion batteries, Electrochimica Acta, 368 (2021) 137623.
[220] Y. Sun, Y. Li, J. Sun, Y. Li, A. Pei, Y. Cui, Stabilized Li3N for efficient battery cathode prelithiation, Energy Storage Materials, 6 (2017) 119-124.
[221] H.-W. Yang, W.S. Kang, S.-J. Kim, A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiO anode for Li-ion batteries, Electrochimica Acta, 412 (2022) 140107.