簡易檢索 / 詳目顯示

研究生: 劉君夏
Liu, Chun-Hsia
論文名稱: 中孔洞二氧化矽奈米複合材料對丙烯選擇 性氧化的應用
Mesoporous silica based nanocomposites for propene partial oxidation
指導教授: 楊家銘
口試委員: 李志甫
鄭淑芬
陳敬勳
蔡易州
楊家銘
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 122
中文關鍵詞: 中孔洞材料丙烯環氧化奈米複合材料金催化劑選擇性沉積金屬氧化物
外文關鍵詞: mesoporous material, propene epoxidation, nanocomposite, gold catalyst, selective deposition, metal oxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討中孔洞二氧化矽奈米複合材料的合成以及將其應用於丙
    烯選擇性氧化的催化研究。在第一部分,SBA-15 的微孔洞被填入各種不同的金
    屬鹽類,並且藉由升高燒結溫度至800 °C 來研究微孔洞的奈米限制效應如何限
    制金屬氧化物奈米顆粒的成長。實驗的結果主要和金屬氧化物的表面自由能以
    及其與二氧化矽間的相圖有關。在第二部分,Au/TiO2@SBA-15 奈米複合材料成
    功地被合成出來並且應用於使用氧氣作為氧化劑和氫氣作為犧牲試劑的丙烯環
    氧化反應中。催化結果顯示此催化劑具有穩定的丙烯產率並且副產物只有少量
    的丙醛和丙酮。這個特別的催化結果和催化劑的設計有關–非常小的金奈米顆
    粒座落在微孔洞中的二氧化鈦奈米顆粒表面,同時中孔洞為疏水表面。這樣的
    催化劑設計,防止了產物環氧丙烯的二次反應。在第三部分,經由真空熱處理
    的合成方式,吾人可以合成出具有高含量以及高分散性的銅觸媒在SBA-15 上的
    奈米複合材料。並且將此材料應用在使用氧氣為氧化劑的丙烯選擇性氧化反應。
    催化結果顯示出其對丙烯具有高轉化率以及對丙烯醛具有高產率。對丙烯具有
    高轉化率主要是由於銅觸媒高度地分散在SBA-15 表面。本論文的結果顯示出,
    在合成金屬氧化物奈米複合材料時,中孔洞表面疏水的SBA-15 是一個特別的載
    體,以及顯示出合理的催化劑設計可以提升催化劑的效能。


    The thesis focused on the preparation of mesoporous SBA-15 silica based nanocomposite and their application in the propylene partial oxidation. In the first part, various metal salts were deposited in the micropores of the SBA-15 support and the influences of the nano-confinement of micropores on the structural and textural properties of the resulting nanocomposite materials after heat treatment at temperatures up to 800 °C were studied. The observations were discussed based on the surface free energy of metal oxides and the phase diagrams of metal oxide with silica. In the second part, a nanostructured Au/TiO2@SBA-15 catalyst has been prepared and applied in propylene epoxidation with a mixture of O2/H2. The nanocomposite catalysts exhibited relatively stable propylene oxide (PO) production with small amounts of propanal and acetone byproducts. The unique catalytic behavior is related to the unique structure of very small Au nanoparticles on nanosized TiO2 phases located in the micropores and the hydrophobicity of the mesopores, which avoids further conversion of the reaction product PO. In the third part, SBA-15-supported high loaded and highly dispersed copper catalysts were prepared by vacuum-thermal treatment and applied in the propylene partial oxidation by using molecular oxygen as oxidant. They exhibited excellent activity and high yield of acrolein. The high activities were associated with the high dispersion of the copper species. The results of this thesis indicated that the SBA-15 with hydrophobic mesopores is a unique support to prepare oxide-containing nanocomposite materials and showed that the rational catalyst design would possibly improve the catalytic performance.

    Abstract ...................................................................................................................... Ⅰ Abstract in Chinese ................................................................................................... Ⅱ Contents...................................................................................................................... Ⅲ List of Schemes .......................................................................................................... Ⅵ List of Figures ............................................................................................................ Ⅶ List of Tables .......................................................................................................... ⅩⅡ Chapter 1 Background and motivation....................................................................................... 1 1-1 Introduction of mesoporous silica ..................................................................... 1 1-2 Propylene partial oxidation................................................................................ 7 1-3 Motivation........................................................................................................ 14 Chapter 2 Deposition and thermal transformation of metal oxides in bimodal mesoporous SBA-15 silica with hydrophobic mesopores............................................................ 16 2-1 Introduction...................................................................................................... 16 2-2 Experiment....................................................................................................... 18 2-3 Results and discussion..................................................................................... 20 2-3-1 SBA-15 silica supports............................................................................ 20 2-3-2 Iron, aluminum and copper-containing materials ................................... 22 2-3-3 Nickel, zirconium and cerium-containing materials............................... 26 2-3-4 Zinc and cadmium-containing materials................................................. 33 2-3-5 Discussion on the distinct thermal transformation of metal oxides in F-SBA-15 ................................................................................................ 39 IV 2-4 Conclusions...................................................................................................... 41 Chapter 3 Au/TiO2@SBA-15 nanocomposites as catalysts for direct propylene epoxidation with O2 and H2 mixtures ........................................................................................... 42 3-1 Introduction...................................................................................................... 42 3-2 Experiment....................................................................................................... 45 3-3 Results and discussion..................................................................................... 48 3-3-1 Solid-state NMR measurements ............................................................. 48 3-3-2 Elemental analysis................................................................................... 50 3-3-3 Textural properties .................................................................................. 51 3-3-4 X-ray diffraction...................................................................................... 52 3-3-5 Ti K-edge X-ray absorption spectroscopy.............................................. 54 3-3-6 Transmission electron microscopy ......................................................... 55 3-3-7 Au L3-edge X-ray absorption spectroscopy............................................ 57 3-3-8 Catalytic performance ............................................................................. 59 3-3-9 Catalyst stability...................................................................................... 61 3-3-10 Relation between catalyst structure and catalytic performance.............. 64 3-4 Conclusions...................................................................................................... 66 Chapter 4 SBA-15-supported highly dispersed copper catalysts: Vacuum-thermal preparation and catalytic studies in propylene partial oxidation......................... 67 4-1 Introduction...................................................................................................... 67 4-2 Experiment....................................................................................................... 69 4-3 Results and discussion..................................................................................... 73 4-3-1 Charaterization of SBA-15-supported copper catalysts.......................... 73 V 4-3-2 In-situ XAS study on the copper species during the thermal decomposition ......................................................................................... 77 4-3-3 Measurement of metallic copper surface area and size .......................... 85 4-3-4 Catalyst performance and stability.......................................................... 87 4-3-5 In-situ XAS study on the copper species in the course of reaction ........ 91 4-4 Conclusions...................................................................................................... 93 Chapter 5 Summery .................................................................................................................... 94 List of publications .................................................................................................... 95 Chapter 6 Reference .................................................................................................................... 96 Appendix A-Abbreviations of sample names ....................................................... 106 Appendix B-Scheme of gas chromatography system........................................... 108

    [1] A. Corma, Chem. Rev., 97 (1997) 2373-2420.
    [2] U. Ciesla, F. Schüth, Micropor. Mesopor. Mater., 27 (1999) 131-149.
    [3] A. Stein, Adv. Mater., 15 (2003) 763-775.
    [4] A. Taguchi, F. Schüth, Micropor. Mesopor. Mater., 77 (2005) 1-45.
    [5] H.H.P. Yiu, P.A. Wright, J. Mater. Chem., 15 (2005) 3690-3700.
    [6] K. Nakanishi, N. Tanaka, Acc. Chem. Res., 40 (2007) 863-873.
    [7] T. Yokoi, Y. Kubota, T. Tatsumi, Appl. Catal., A 421–422 (2012) 14-37.
    [8] T.A. Nijhuis, B.M. Weckhuysen, Catal. Today, 117 (2006) 84-89.
    [9] C.M. Yang, B. Zibrowius, W. Schmidt, F. Schüth, Chem. Mater., 15 (2003)
    3739-3741.
    [10] J.B. Reitz, E.I. Solomon, J. Am. Chem. Soc., 120 (1998) 11467-11478.
    [11] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem.
    Res., 45 (2006) 3447-3459.
    [12] G.J.d.A.A. Soler-Illia, E.L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin.
    Colloid Interface Sci., 8 (2003) 109-126.
    [13] C.M. Yang, B. Zibrowius, W. Schmidt, F. Schüth, Chem. Mater., 16 (2004)
    2918-2925.
    [14] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature, 359
    (1992) 710-712.
    [15] Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger,
    A. Firouzi, B.F. Chmelka, Chem. Mater., 6 (1994) 1176-1191.
    [16] S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Science, 269 (1995) 1242-1244.
    [17] P.T. Tanev, T.J. Pinnavaia, Science, 267 (1995) 865-867.
    97
    [18] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D.
    Stucky, Science, 279 (1998) 548-552.
    [19] A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J.
    Chem., 27 (2003) 73-79.
    [20] Y. Wan, D. Zhao, Chem. Rev., 107 (2007) 2821-2860.
    [21] S. Kawi, M.W. Lai, AIChE J., 48 (2002) 1572-1580.
    [22] R. van Grieken, G. Calleja, G.D. Stucky, J.A. Melero, R.A. García, J. Iglesias,
    Langmuir, 19 (2003) 3966-3973.
    [23] B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, D. Zhao, Chem.
    Commun., (2002) 1186-1187.
    [24] T. Hayashi, K. Tanaka, M. Haruta, J. Catal., 178 (1998) 566-575.
    [25] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew Chem. Int. Ed., 43
    (2004) 1546-1548.
    [26] M. Haruta, B.S. Uphade, S. Tsubota, A. Miyamoto, Res. Chem. Intermed., 24
    (1998) 329-336.
    [27] M. Haruta, M. Daté, Appl. Catal., A 222 (2001) 427-437.
    [28] B.S. Uphade, M. Okumura, S. Tsubota, M. Haruta, Appl. Catal., A 190 (2000)
    43-50.
    [29] M.M. Bettahar, G. Costentin, L. Savary, J.C. Lavalley, Appl. Catal., A 145
    (1996) 1-48.
    [30] C.R. Adams, T.J. Jennings, J. Catal., 3 (1964) 549-558.
    [31] G.W. Keulks, L.D. Krenzke, T.M. Notermann, Selective Oxidation of
    Propylene, in: H.P. D.D. Eley, B.W. Paul (Eds.) Advances in Catalysis,
    Academic Press, 1979, pp. 183-225.
    [32] J.S. Yu, L. Kevan, J. Phys. Chem., 95 (1991) 3262-3271.
    [33] J.S. Yu, L. Kevan, J. Phys. Chem., 95 (1991) 6648-6653.
    98
    [34] O.P.H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov, R.M. Lambert, J.
    Catal., 236 (2005) 401-404.
    [35] C.M. Yang, H.A. Lin, B. Zibrowius, B. Spliethoff, F. Schüth, S.C. Liou, M.W.
    Chu, C.H. Chen, Chem. Mater. 13 (2007) 3205-3211.
    [36] H.A. Lin, C.H. Liu, W.C. Huang, S.C. Lion, M.W. Chu, C.H. Chen, J.F. Lee,
    C.M. Yang, Chem. Mater., 20 (2008) 6617-6622.
    [37] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc.
    120 (1998) 6024-6036.
    [38] Y. Wan, Y. Shi, D. Zhao, Chem. Commun. (2007) 897-926.
    [39] M. Hartmann, Chem. Mater. 17 (2005) 4577-4593.
    [40] B.G. Trewyn, S. Giri, I.I. Slowing, V.S.Y. Lin, Chem. Commun. (2007)
    3236-3245.
    [41] A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3
    (2011) 2801-2818.
    [42] Z. Wu, D. Zhao, Chem. Commun. 47 (2011) 3332-3338.
    [43] C. Yu, J. He, Chem. Commun. 48 (2012) 4933-4940.
    [44] M. Impéror-Clerc, P. Davidson, A. Davidson, J. Am. Chem. Soc. 122 (2000)
    11925-11933.
    [45] P.I. Ravikovitch, A.V. Neimark, J. Phys. Chem. B 105 (2001) 6817-6823.
    [46] R. Palkovits, C.M. Yang, S. Olejnik, F. Schüth, J. Catal. 243 (2006) 93-98.
    [47] I. Yuranov, L. Kiwi-Minsker, P. Buffat, A. Renken, Chem. Mater. 16 (2004)
    760-761.
    [48] Q. Jiang, Z.Y. Wu, Y.M. Wang, Y. Cao, C.F. Zhou, J.H. Zhu, J. Mater. Chem.
    16 (2006) 1536-1542.
    [49] S. Valange, R. Palacio, A. Charmot, J. Barrault, A. Louati, Z. Gabelica, J.
    Mol. Catal. A: Chem. 305 (2009) 24-33.
    99
    [50] C.H. Liu, Y. Guan, E.J.M. Hensen, J.F. Lee, C.M. Yang, J. Catal. 282 (2011)
    94-102.
    [51] Y. Kawamoto, Y. Ide, T. Sano, M. Sadakane, Proceeding of 2012 International
    Symposium on Zeolites and Microporous Crystals, 2012, p. 102.
    [52] J. Wu, J. Cao, W. Han, A. Janotti, H. Kim, Functional Metal Oxide
    Nanostructures, Springer, New York, 2012.
    [53] M.V. Landau, L. Vradman, A. Wolfson, P.M. Rao, M. Herskowitz, C. R.
    Chim. 8 (2005) 679-691.
    [54] L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P.
    Fornasiero, ChemSusChem 3 (2010) 24-42.
    [55] C.M. Yang, A.T. Cho, F.M. Pan, T.G. Tsai, K.J. Chao, Adv. Mater. 13 (2001)
    1099-1102.
    [56] T. Tsoncheva, J. Rosenholm, C.V. Teixeira, M. Dimitrov, M. Linden, C.
    Minchev, Micropor. Mesopor. Mater. 89 (2006) 209-218.
    [57] T. Tsoncheva, J. Rosenholm, M. Linden, L. Ivanova, C. Minchev, Appl.
    Catal., A 318 (2007) 234-243.
    [58] T. Tsoncheva, J. Roggenbuck, D. Paneva, M. Dimitrov, I. Mitov, M. Fröba,
    Appl. Surf. Sci. 257 (2010) 523-530.
    [59] J. Du, H. Xu, J. Shen, J. Huang, W. Shen, D. Zhao, Appl. Catal., A 296 (2005)
    186-193.
    [60] Y.H. Sun, L.B. Sun, T.T. Li, X.Q. Liu, J. Phys. Chem. C 114 (2010)
    18988-18995.
    [61] W. Su, S. Wang, P. Ying, Z. Feng, C. Li, J. Catal. 268 (2009) 165-174.
    [62] T. Tsoncheva, M. Linden, S. Areva, C. Minchev, Catal. Commun. 7 (2006)
    357-361.
    100
    [63] X. Zhong, J. Barbier Jr, D. Duprez, H. Zhang, S. Royer, Appl. Catal., B
    121-122 (2012) 123-134.
    [64] D. Pietrogiacomi, D. Sannino, S. Tuti, P. Ciambelli, V. Indovina, M.
    Occhiuzzi, F. Pepe, Appl. Catal., B 21 (1999) 141-150.
    [65] S. Bennici, A. Gervasini, N. Ravasio, F. Zaccheria, J. Phys. Chem. B 107
    (2003) 5168-5176.
    [66] A. Patel, P. Shukla, T. Rufford, S. Wang, J. Chen, V. Rudolph, Z. Zhu, Appl.
    Catal., A 409-410 (2011) 55-65.
    [67] M.Y. Cheng, C.J. Pan, B.J. Hwang, J. Mater. Chem. 19 (2009) 5193-5200.
    [68] W. Stichert, F. Schüth, Chem. Mater. 10 (1998) 2020-2026.
    [69] B.H. Min, E.Y. Jeong, M. Thommes, S.E. Park, Chem. Commun. 47 (2011)
    4673-4675.
    [70] J.R.A. Sietsma, J.D. Meeldijk, J.P. den Breejen, M. Versluijs-Helder, A.J. van
    Dillen, P.E. de Jongh, K.P. de Jong, Angew. Chem., Int. Ed. 46 (2007)
    4547-4549.
    [71] C. Tang, H. Zhang, C. Sun, J. Li, L. Qi, Y. Quan, F. Gao, L. Dong, Catal.
    Commun. 12 (2011) 1075-1078.
    [72] M. Takesue, H. Hayashi, R.L. Smith Jr, Prog. Cryst. Growth Charact. Mater.
    55 (2009) 98-124.
    [73] X. Qu, L. Cao, W. Liu, G. Su, H. Qu, C. Xu, J. Alloys Compd. 484 (2009)
    641-644.
    [74] X. Jiang, Y.B. Jiang, C.J. Brinker, Chem. Commun. 47 (2011) 7524-7526.
    [75] N. Takahashi, M. Hoshogi, T. Nakumura, Y. Momose, S. Nonaka, H. Yagi, Y.
    Sinriki, K. Tamanuki, J. Mater. Chem. 12 (2002) 719-722.
    [76] S. H. Overbury, P. A. Bertrand, G. A. Somorjai, Chem. Rev. 75 (1975)
    547-560.
    101
    [77] H. Knözinger, E. Taglauer, in: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp
    (Eds.), Handbook of heterogeneous catalysis, second ed., Wiley-VCH,
    Weinheim, 2008, pp. 555-571.
    [78] D.L. Trent, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley,
    NewYork, 1996.
    [79] K. Weissermel, H.J. Arpe, Industrial Organic Chemistry, second ed., VCH,
    New York, 1993.
    [80] M. Mccoy, C.E.N.N. Bureau, Chem. Eng. News 79 (2001) 19.
    [81] A. Tullo, Chem. Eng. News 82 (2004) 15.
    [82] A. Tullo, Chem. Eng. News 83 (2005) 7.
    [83] A.H. Tullo, P.L. Short, Chem. Eng. News 84 (2006) 22.
    [84] M. Akimoto, K. Ichikawa, E. Echigoya, J. Catal. 76 (1982) 333-344.
    [85] M.A. Barteau, R.J. Madix, J. Am. Chem. Soc. 105 (1983) 344-349.
    [86] J. Lu, J.J. Bravo-Suáez, A. Takahashi, M. Haruta, S.T. Oyama, J. Catal. 232
    (2005) 85-95.
    [87] D. Sullivan, P. Hooks, M. Mier, J. van Hal, X. Zhang, Top. Catal. 38 (2006)
    303-308.
    [88] J. Lu, M. Luo, H. Lei, C. Li, Appl. Catal., A 237 (2002) 11-19.
    [89] G. Lu, X. Zuo, Catal. Lett. 58 (1999) 67-70.
    [90] H. Chu, L.u. Yang, Q. Zhang, Y. Wang, J. Catal. 241 (2006) 225-228.
    [91] M. Haruta, CATTECH 6 (2002) 102-115.
    [92] B.K. Min, C.M. Friend, Chem. Rev. 107 (2007) 2709-2724.
    [93] C.X. Qi, Gold Bull. 41 (2008) 224-234.
    [94] M. Haruta, Nature 437 (2005) 1098-1099.
    [95] B.S. Uphade, T. Akita, T. Nakamura, M. Haruta, J. Catal. 209 (2002) 331-340.
    [96] A.K. Sinha, S. Seelan, T. Akita, S. Tsubota, M. Haruta, Appl. Catal., A 240
    102
    (2003) 243-252.
    [97] J. Lu, X. Zhang, J.J. Bravo-Suáez, T. Fujitani, S.T. Oyama, Catal. Today 147
    (2009) 186-195.
    [98] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301-309.
    [99] T.A. Nijhuis, T. Visser, B.M. Weckhuysen, J. Phys. Chem. B 109 (2005)
    19309-19319.
    [100] B. Taylor, J. Lauterbach, W.N. Delgass, Appl. Catal., A 291 (2005) 188.
    [101] C. Sivadinarayana, T.V. Choudhary, L.L. Daemen, J. Eckert, D.W. Goodman,
    J. Am. Chem. Soc. 126 (2003) 38-39.
    [102] P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Chem.
    Commun. (2002) 2058-2059.
    [103] T.A. Nijhuis, T.Q. Gardner, B.M. Weckhuysen, J. Catal. 236 (2005) 153-163.
    [104] W.T. Wallace, D.W. Goodman, J. Phys. Chem. B 108 (2004) 14609-14615.
    [105] L. Giordano, A. Del Vitto, G. Pacchioni, J. Chem. Phys. 124 (2006) 034701.
    [106] G. Mul, A. Zwijnenburg, B. van der Linden, M. Makkee, J.A. Moulijn, J.
    Catal. 201 (2001) 128-137.
    [107] T.A. Nijhuis, B.J. Huizinga, M. Makkee, J.A. Moulijn, Ind. Eng. Chem. Res.
    38 (1999) 884-891.
    [108] B. Taylor, R.P. Andres, W.N. Delgass, J. Phys. Chem. B 109 (2004)
    2321-2330.
    [109] A. Ruiz, B. van der Linden, M. Makkee, G. Mul, J. Catal. 266 (2009)
    286-290.
    [110] U. Ciesla, F. Schüth, Micropor. Mesopor. Mater. 27 (1999) 131-149.
    [111] Y.A. Kalvachev, T. Hayashi, S. Tsubota, M. Haruta, J. Catal. 186 (1999)
    228-233.
    [112] B.S. Uphade, Y. Yamada, T. Akita, T. Nakamura, M. Haruta, Appl. Catal., A
    103
    215 (2001) 137-148.
    [113] J. Lu, X. Zhang, J.J. Bravo-Suáez, K.K. Bando, T. Fujitani, S.T. Oyama, J.
    Catal. 250 (2007) 350-359.
    [114] E. Sacaliuc-Parvulescu, A.M. Beale, B.M. Weckhuysen, T.A. Nijhuis, J. Catal.
    248 (2007) 235-248.
    [115] E. Sacaliuc-Parvulescu, H. Friedrich, R. Palkovits, B.M. Weckhuysen, T.A.
    Nijhuis, J. Catal. 259 (2008) 43-53.
    [116] T.A. Nijhuis, E. Sacaliuc-Parvulescu, N.S. Govender, J.C. Schouten, B.M.
    Weckhuysen, J. Catal. 265 (2009) 161-169.
    [117] T.A. Nijhuis, B.M. Weckhuysen, Chem. Commun. (2005) 6002-6004.
    [118] W.Y. Yu, C.P. Yang, J.N. Lin, C.N. Kuo, B.-Z. Wan, Chem. Commun. (2005)
    354-356.
    [119] T. Maddanimath, A. Kumar, J. D’Arcy-Gall, P.G. Ganesan, K. Vijayamohanan,
    G. Ramanath, Chem. Commun. (2005) 1435-1437.
    [120] H. Miyamura, R. Matsubara, Y. Miyazaki, S. Kobayashi, Angew. Chem. Int.
    Ed. 46 (2007) 4151-4154.
    [121] J.M. Thomas, G. Sankar, Acc. Chem. Res. 34 (2001) 571-581.
    [122] A. Hagen, K. Schueler, F. Roessner, Micropor. Mesopor. Mater. 51 (2002)
    23-33.
    [123] B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends, D. Post, Phys. Rev. B 27
    (1983) 2132-2144.
    [124] A. Jentys, Phys. Chem. Chem. Phys. 1 (1999) 4059-4063.
    [125] E.L. Crepaldi, G.J.d.A.A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C.
    Sanchez, J. Am. Chem. Soc. 125 (2003) 9770-9786.
    [126] C.J. Brinker, G.W. Scherer, Sol–Gel Science 1990.
    [127] J. Lu, X. Zhang, J.J. Bravo-Suáez, S. Tsubota, J. Gaudet, S.T. Oyama, Catal.
    104
    Today 123 (2007) 189-197.
    [128] W.J.T. John Meurig Thomas, Principles and Practice of Heterogeneous
    Catalysis, VCH, Weinheim, 1997.
    [129] C.S. Chen, C.C. Chen, C.T. Chen, H.M. Kao, Chem. Commun., 47 (2011)
    2288-2290.
    [130] C.S. Chen, Y.T. Lai, T.W. Lai, J.H. Wu, C.H. Chen, J.F. Lee, H.M. Kao, ACS
    Catal., 3 (2013) 667-677.
    [131] J. Huang, M. Haruta, Res. Chem. Intermed., 38 (2012) 1-24.
    [132] C.H. Tu, A.Q. Wang, M.Y. Zheng, X.D. Wang, T. Zhang, Appl. Catal., A 297
    (2006) 40-47.
    [133] X. Zhang, N. Huang, G. Wang, W. Dong, M. Yang, Y. Luan, Z. Shi,
    Micropor. Mesopor. Mater, 177 (2013) 47-53.
    [134] A. Ungureanu, B. Dragoi, A. Chirieac, S. Royer, D. Duprez, E. Dumitriu, J.
    Mater. Chem., 21 (2011) 12529-12541.
    [135] P. Munnik, M. Wolters, A. Gabrielsson, S.D. Pollington, G. Headdock, J.H.
    Bitter, P.E. de Jongh, K.P. de Jong, J. Phys. Chem. C, 115 (2011)
    14698-14706.
    [136] T. Tsoncheva, V. Dal Santo, A. Gallo, N. Scotti, M. Dimitrov, D. Kovacheva,
    Appl. Catal., A 406 (2011) 13-21.
    [137] L.F. Chen, P.J. Guo, L.J. Zhu, M.H. Qiao, W. Shen, H.L. Xu, K.N. Fan, Appl.
    Catal., A 356 (2009) 129-136.
    [138] Y.M. Wang, Z.Y. Wu, L.Y. Shi, J.H. Zhu, Adv. Mater., 17 (2005) 323-327.
    [139] Y. Yin, W.J. Jiang, X.Q. Liu, Y.H. Li, L.-B. Sun, J. Mater. Chem., 22 (2012)
    18514-18521.
    [140] E.I. Basaldella, J.C. Tara, G.A. Armenta, M.E.P. Iglesias, J. Porous Mater., 14
    (2007) 273-278.
    105
    [141] D. Duzenli, E. Seker, S. Senkan, I. Onal, Catal. Lett., 142 (2012) 1234-1243.
    [142] H. Tüysüz, J. Galilea, F. Schüth, Catal. Lett., 131 (2009) 49-53.
    [143] L. Yang, J. He, Q. Zhang, Y. Wang, J. Catal., 276 (2010) 76-84.
    [144] J. He, Q. Zhai, Q. Zhang, W. Deng, Y. Wang, J. Catal., 299 (2013) 53-66.
    [145] T. Inui, T. Ueda, M. Suehiro, J. Catal., 65 (1980) 166-173.
    [146] C.H. Liu, N.C. Lai, S.C. Liou, M.W. Chu, C.H. Chen, C.M. Yang, Micropor.
    Mesopor. Mater., 179 (2013) 40-47.
    [147] C.M. Chanquía, L. Andrini, J.D. Fernández, M.n.E. Crivello, F.l.G. Requejo,
    E.R. Herrero, G.A. Eimer, J. Phys. Chem. C, 114 (2010) 12221-12229.
    [148] I.V. Morozov, K.O. Znamenkov, Y.M. Korenev, O.A. Shlyakhtin,
    Thermochim. Acta, 403 (2003) 173-179.
    [149] T. Beutel, J. Sárkány, G.D. Lei, J.Y. Yan, W.M.H. Sachtler, J. Phys. Chem.,
    100 (1996) 845-851.
    [150] H. Hofmeister, P.T. Miclea, M. Steen, W. Mörke, H. Drevs, Top. Catal., 46
    (2007) 11-21.
    [151] J. Ghose, A. Kanungo, J. Therm. Anal., 20 (1981) 459-462.
    [152] J.R.A. Sietsma, J.D. Meeldijk, M. Versluijs-Helder, A. Broersma, A.J.v.
    Dillen, P.E. de Jongh, K.P. de Jong, Chem. Mater., 20 (2008) 2921-2931.
    [153] J. van de Loosdrecht, S. Barradas, E.A. Caricato, N.G. Ngwenya, P.S.
    Nkwanyana, M.A.S. Rawat, B.H. Sigwebela, P.J. van Berge, J.L. Visagie,
    Top. Catal., 26 (2003) 121-127.
    [154] P.L. Llewellyn, V. Chevrot, J. Ragaï, O. Cerclier, J. Estienne, F. Rouquérol,
    Solid State Ionics, 101–103 (1997) 1293-1298.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE