簡易檢索 / 詳目顯示

研究生: 曾信原
論文名稱: 多體運動學之動態模擬
指導教授: 王志宏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 159
中文關鍵詞: 多體運動學保持器曲柄滑塊
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機械很少是由單一元件所組合而成,因此分析機械的動態行為便是在分析一多體運動學的動態行為,本文以商用軟體模擬曲柄滑塊系統及外環引導式滾珠軸承兩案例來探討其動態行為。
    先由理論推導與分析曲柄滑塊系統及保持器的動態行為,首先在曲柄滑塊系統中,將模擬出的結果與理論及文獻做比較,確認軟體的設定步驟與正確性,進而探討曲柄滑塊較實際的動態行為。接著分析當軸承運轉至穩態時,軸承中各原件的運動與受力行為,並觀察保持器的動態行為,一方面利用程式撰寫透過數值模擬的方法,一方面透過LMS Motion軟體模擬,得到各種不同之參數對於保持器動態行為之影響。
    結果顯示,在曲柄滑塊的系統中,間隙對於運動狀態會有突然的改變,所以計算桿件的受力也會有峰值的産生,但考慮撓性體的影響時,因撓性體扮演懸吊系統的角色,所以有降低峰值的效果。當接頭中存在摩擦力時,摩擦力也使接頭內軸頸的軌跡有較穩定的表現。考慮間隙中的接觸材質時,較軟的材質因有較大的阻尼,相較於較硬的材質,也使軸自由飛行的機率降低。
    對於保持器,保持器若有偏心量,保持器之運動行為將呈現公轉頻率與自轉頻率相等,但模擬結果卻顯示當球孔間隙大於徑向間隙時,保持器的碰撞行為會較難達到穩定,軌跡會呈現混亂較無規律,但此時保持器與軌道間的接觸點分佈會較為均勻,為了使保持器有較好的動態行為,所有介面之摩擦係數越小越好,而球孔間隙略大於保持器與外環之間隙應是好的設計。


    摘 要 I 目 錄 II 第一章 前 言 1 1-1 研究動機 1 1-2 文獻回顧 1 1-3 研究目標 6 第二章 理論分析 7 2-1 多體動力學理論基礎 7 2-2 曲柄-滑塊機構之運動學分析 9 2-3 曲柄-滑塊機構之動力學分析 12 2-4 考慮接頭具間隙之曲柄-滑塊機構 15 2-4-1 碰撞對模型 16 2-4-2 具間隙之運動方程式推導 21 2-5 滾珠軸承保持器之運動學分析 29 2-6 滾珠軸承保持器之動力學分析 32 2-6-1 座標系的定義 32 2-6-2 保持器之受力分析 35 2-6-3 滾珠受力情形 46 2-6-4 保持器的偏心量造成之偏心力 52 2-6-5 保持器的運動方程式 54 2-6-6 保持器的穩態運動行為 55 2-7 撓性多體動力學之分析 59 2-7-1 座標系統之建立 59 2-7-2 系統動態方程式 65 2-7-3 子結構合成法 80 第三章 模擬結果與討論 89 3-1 曲柄-滑塊機構之模擬 89 3-1-1 無間隙剛體之結果驗証 90 3-1-2 具間隙剛體之結果比較 93 3-1-3 無間隙撓性體之結果比較 104 3-1-4 具間隙撓性體之結果比較 107 3-1-5 探討曲柄滑塊機構動態 113 3-2 滾珠軸承之模擬 131 3-2-1 Matlab程式流程 131 3-2-2 Matlab程式模擬結果 135 3-2-3 Motion之模擬結果 145 3-3 多體動力學模擬之限制 150 第四章 結 論 152 參考文獻 155 附 錄A 曲柄滑塊機構之模擬程序 A-1 附 錄B 滾珠軸承之模擬程序 B-1 附 錄C 模擬結果與文獻之比較 C-1

    【1】 Robert, L. N., “Design of Machinery,” McGraw-Hill, Inc., New York, 1993.
    【2】 Ravn, P., “A Continuous Analysis Method for Planar Multibody Systems with Joint Clearance,” Multibody System Dynamics. Vol.2, No.1, pp.1-24, 1998.
    【3】 Flores, P., “Dynamic Analysis for Planar Multibody Mechanical Systems with Lubricated Joints,” Multibody System Dynamics. Vol.12, No.1, pp.47-74, 2004.
    【4】 Samba, Y. C. M., “Dynamic Analysis and Numerical Simulation of Flexible Multibody Systems,” Mechanics Based Design of Structures and Machines. Vol.29, No.3, pp.295-316, 2001.
    【5】 Goudas, I., “Non-Linear Dynamics of Engine Mechanisms with a Flexible Connecting Rod,” Journal of Multi-Body Dynamics. Vol.218, No.2, pp.67-80, 2004.
    【6】 Pennestri, E., “An Application of the Udwadia-Kalaba Dynamic Formulation to Flexible Multibody Systems,” Journal of the Franklin Institute. Vol.347, No.1, pp.173-194, 2010.
    【7】 Fung, R. F., “Dynamic Analysis of the Flexible Rod of a Quick-Return Mechanism with Time-Dependent Coefficients by the Finite Element Method,” Journal of Sound and Vibration. Vol.202, No.2, pp.187-201, 1997.
    【8】 Shabana, A. A., “Effect of Using Composites on the Dynamic Response of Multi-Body Systems,” Journal of Sound and Vibration. Vol.108, No.3, pp.487-502, 1986.
    【9】 Fang, L. B., “Dynamic Contact Analysis of Frictional Flexible Mechanisms,” Journal of the Chinese Society of Mechanical Engineers. Vol.19, No.3, pp.285-296, 1998.
    【10】 Dubowsky, S., “An Experimental and Analytical Study of Impact Forces In Elastic Mechanical Systems with Clearances,” Mechanism and Machine Theory. Vol.13, No.4, pp.451-465, 1978.
    【11】 Khemili, I., “Dynamic Analysis of a Flexible Slider-Crank Mechanism with Clearance,” European Journal of Mechanics. Vol.27, No.5, pp.882-898, 2008.
    【12】 Tada, S., “Dynamic Analysis of Sound, Vibration and Motion of Cages in High Speed Ball Bearings,” KOYO Engineering Journal. No.160, pp.31-38, 2001.
    【13】 Gupta, P. K. “Cage unbalance and wear in ball bearings,” Journal of Wear. No.147, pp.93-104, 1991.
    【14】 Harsha, S. P. “Nonlinear dynamic analysis of rolling element bearings due to cage run-out and number of balls,” Journal of Sound and Vibration. No.289, pp.360-381, 2006.
    【15】 Damiens, B. and Lubrecht, A.A. “Influence of Cage Clearance on Bearing Lubrication,” Society of Tribologists and Lubrication Engineers.No.47, pp.2-6, 2004.
    【16】 Shoji, N., Ken, N., Yuuki, U. and Tohru K. “The Influence of Cage on the NRRO of Rotational Frequency of the Cage in a Ball Bearing,” Journal of Japanese Society of Tribologists, No.51, pp.166-171, 2006.
    【17】 Meeks, C. R. and Karen, N. G. “The Dynamics of Ball Separators in Ball Bearings-Part I: Analysis,” ASLE Transactions. Vol.28, No.3, pp.277-287, 1984.
    【18】 Meeks, C. R. “The Dynamics of Ball Separators in Ball Bearings-Part II: Results of Optimization Study,” ASLE Transactions. Vol.28, No.3, pp.288-295, 1984.
    【19】 Dubowsky, S. and Freudenstein, F., “Dynamic Analysis of Mechanical Systems with Clearances. Part 1: Formation of Dynamic Model,” Transactions of ASME Journal of Engineering for Industry, Vol.93, pp.305-309, 1971.
    【20】 Dubowsky, S. and Freudenstein, F., “Dynamic Analysis of Mechanical Systems with Clearances. Part 2: Dynamic Response,” Transactions of ASME Journal of Engineering for Industry, Vol.93, pp.310-316, 1971.
    【21】 Dubowsky, S., Norris, M., Aloni, E. and Tmir, A., “A Analytical and Experimental Study of the Prediction of Impact in Planar Mechanical Systems with Clearances,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol.106, pp.444-451, 1984.
    【22】 Deck, J. F. and Dubowsky, S., “On the Limitions of Predictions of the Dynamics Response of Machines with Clearance Connectioins,” Journal of Mechanical Design, Vol.116, pp.833-841, 1994.
    【23】 Gu, P. and Dubowsky, S., “Chaotic Vibration and Design Criteria for Machine Systems with Clearance Connections,” Proceedings of 9th World Congress of the Theory of Machines and Mechanism, pp.1-6, 1995.
    【24】 Deck, J. H., “The Dynamics of Spatial Elastic Mechanisms with Clearances and Support Structure,” PhD thesis, Massachusetts Institute of Technolohy Dept. of Mechanical Engineering, 1992.
    【25】 Barber, J. R., “Elasticity,” Kluwer Academic Publisher, 1992.
    【26】 Gupta, P. K. “Frictional Instabilities in Ball Bearings,” STLE Tribology Transactions. Vol.31, No.2, pp.258-268, 1987.
    【27】 Gupta, P. K., “Traction Coefficients for Some Solid Lubricants for Rolling Bearing Dynamics Modeling,” STLE Tribology Transactions. Vol.43, No.4, pp.647-652, 2000.
    【28】 Wang, J. H. and Huang, H.-Y., “Model and Parameters Identification of Non-Linear Joint by Force-State Mapping in Frequency Domain,” Journal of Mechanics. Vol.23, No.4, pp.367-380, 2007.
    【29】 Shabana, A. A., “Dynamics of Multibody Systems,” Cambridge University Press, 2005.
    【30】 楊福仁, “接頭具間隙連桿機構之碰撞問題研究,” 碩士論文, 國立清華大學動力機械工程研究所, 民國九十二年.
    【31】 Dubowsky, S., “Dynamic Interactions of Link Elasticity and Clearance Connections in Planar Mechanical Systems,” Transactions of ASME Journal of Engineering for Industry, Vol.97, pp.652-661, 1975.
    【32】 Dubowsky, S., “Design and Analysis of Multilink Flexible Mechanisms With Multiple Clearance Connections,” Transactions of ASME Journal of Engineering for Industry, Vol.99, pp.88-96, 1977.
    【33】 馮榮豐, “機構動力學與運動控制,” 滄海書局, 民國九十年.
    【34】 Kim, T. C., “Effect of Smoothening Functions on the Frequency Response of an Oscillator with Clearance Non-linearity,” Journal of Sound and Vibration, Vol.263, pp.665-678, 2003.
    【35】 “Virtual Lab Rev8B User’s Manual”, LMS International.
    【36】 “Matlab R2008a User’s Manual”, Mathworks International.
    【37】 陳宏鈞, “滾動軸承保持器之動態特性研究,” 碩士論文, 國立清華大學動力機械工程研究所, 民國九十九年.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE