簡易檢索 / 詳目顯示

研究生: 喬書亞
Joshoua Condicion Esmenda
論文名稱: 電驅動奈米機械振盪器的模態分析
Modal analysis of electrically driven nanomechanical oscillators
指導教授: 陳啟東
Chen, Chii-Dong.
張廖貴術
Chang-Liao, Kuei-Shu.
口試委員: 吳憲昌
Wu, Xian-Chang.
張嘉升
Chang, Jia-Sheng.
謝馬利歐
Hoffman, Mario.
謝雅萍
Hsieh, Ya-Ping.
林宮玄
Lin, Kung-Hsuan.
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 54
中文關鍵詞: 納米機械振盪器納米機械諧振器模態分析二維材料光電傳感器
外文關鍵詞: Nanomechanical oscillators, Nanomechanical resonators, Modal analysis, Two-dimensional materials, Optoelectrical transducer
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文通過模態分析探討了納米機械振盪器的運動性質.納米機械振盪器是自然的能量傳感器, 因為它們對施加的力(例如電力和光學力)非常敏感. 這使得它們適用於需要與弱信號交互的各種應用, 例如光學微波轉換器, 這是量子混合系統中必不可少的一個角色. 可用於研究納米機械振盪器的工具是模態分析, 它以固有頻率和模態形狀的形式確定其動態特性. 通過這種分析, 可以闡明系統的固有特性, 例如材料特性, 幾何形狀和邊界條件, 所有這些對於納米機械振盪器的利用都是至關重要的. 為了實現這一點, 需要一種驅動手段, 例如電動勢, 由於其可控性和局部性, 它允許對納米機械振盪器進行詳細探測. 此外, 空間檢測方法 (例如法布里-珀羅配置中機械振盪器的激光干涉測量法) 同樣重要. 在該實驗中, 由石墨和 NbSe_2 等二維材料製成的納米機械振盪器子類主要是因為它們的低質量和高靈活性, 而且還因為它們的電子和光學特性適合驅動和檢測手段. 通過觀察納米機械振盪器對電刺激變化的響應, 我們發現多層鼓面對電磁波的傳導能力比它們的超薄對應物提供的更多. 更重要的是, 我們能夠通過模態分析更深入地利用納米機械振盪器的空間方面. 我們不僅能夠通過實驗可視化納米機械模式, 我們還揭示了驅動力和共振模式的相互作用. 我們發現驅動力形狀與共振模式的投影決定了納米機械振盪在整個頻譜中的表現.


    This dissertation explores the nature of motion of nanomechanical oscillators through modal analysis. Nanomechanical oscillators are natural transducers of energy because they respond very sensitively to applied forces such as electrical and optical forces. This makes them suitable for diverse applications that require interaction with weak signals, such as an optical microwave converter, a role that is essential in quantum hybrid systems. A tool that can be used to study nanomechanical oscillators is modal analysis, which determines its dynamic characteristics in forms of natural frequencies and modal shapes. Through this analysis, the inherent properties of the system such as material properties, geometry, and boundary conditions, all of which are critical for the utilization of nanomechanical oscillators, could be elucidated. To realize this, a driving means such as the electromotive force, which allows for the probing of nanomechanical oscillators in detail because of its controllability and locality, is necessary. Furthermore, a spatial detection method such as laser interferometry of mechanical oscillators in a Fabry-Perot configuration is equally crucial. For the experiment, a sub-class of nanomechanical oscillators made from two-dimensional materials, such as graphite and NbSe_2, were fabricated primarily because of their low mass and high flexibility, but also because their electronic and optical properties fit the driving and detection means. By observing the response of the nanomechanical oscillators with respect to the variations in electrical stimuli, we found that the transductive capability of multilayered drumheads for electromagnetic waves offer more than their ultrathin counterparts. More importantly we were able to make use of the spatiality aspect of the nanomechanical oscillators with more depth through modal analysis. Not only were we able to visualize the nanomechanical modes experimentally we also revealed the interaction of the driving force and the resonance modes. We discover that the projection of the shape of the driving force with the resonance modes determine how the nanomechanical oscillations behave across the frequency spectrum.

    Abstract iii Acknowledgements v 1 Nanomechanical oscillations 1 1.1 Nanomechanical oscillators in quantum systems . . . . . . . . . . . . . 1 1.2 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Mechanical tension and flexural rigidity . . . . . . . . . . . . . . . . . . 3 1.4 Electrical force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 Time-dependent electrical force . . . . . . . . . . . . . . . . . . . 4 1.4.2 Electrical force influence to mechanical amplitude . . . . . . . . 5 1.5 Resonance modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5.1 Normal mode expansion . . . . . . . . . . . . . . . . . . . . . . . 6 1.5.2 Matrix form analysis of normal mode expansion . . . . . . . . . 7 2 Fabrication and detection of nanomechanical osillators 9 2.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Two-dimensional materials . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Deterministic transfer . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Optical detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Laser interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Electrically driven multilayered nanomechanical resonators 15 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Description and characterization of the device . . . . . . . . . . 15 3.2.2 Electrostatic tunability . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Optomechanical responsivity . . . . . . . . . . . . . . . . . . . . 19 3.3.2 Multilayered NMR model . . . . . . . . . . . . . . . . . . . . . . 20 3.3.3 Factors affecting tunability . . . . . . . . . . . . . . . . . . . . . 22 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Detailed simulations and analysis . . . . . . . . . . . . . . . . . . . . . . 26 3.5.1 Simulated results of mechanical frequency dependence . . . . . 26 3.5.2 Multiple interface approach . . . . . . . . . . . . . . . . . . . . . 28 4 Experimental modal analysis 30 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Description and characterization of the device . . . . . . . . . . 31 4.2.2 Spatial response mapping . . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Modal weights from experiment . . . . . . . . . . . . . . . . . . 34 Modal analysis without damping using FEM simulation . . . . 37 Modal weight dependence on driving frequency . . . . . . . . . 37 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Effect of driving force on the modal shapes . . . . . . . . . . . . 39 4.3.2 Off-resonance modal analysis’ role in nanomechanical resonator studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5.1 Experimental modal weight data . . . . . . . . . . . . . . . . . . 41 4.5.2 FEM simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.6 Detailed COMSOL simulations . . . . . . . . . . . . . . . . . . . . . . . 42 4.6.1 Modal weights for extended frequency range . . . . . . . . . . . 42 4.6.2 Modal weights dependency on eccentricity . . . . . . . . . . . . 45 4.6.3 Modal analysis using a beam geometry . . . . . . . . . . . . . . 46 4.6.4 Modal weights dependency on damping parameter . . . . . . . 47 5 Conclusion 48 Bibliography 49

    [1] HJ Mamin and D Rugar. “Sub-attonewton force detection at millikelvin temperatures”.
    In: Applied Physics Letters 79.20 (2001), pp. 3358–3360.
    [2] MD LaHaye et al. “Approaching the quantum limit of a nanomechanical resonator”.
    In: Science 304.5667 (2004), pp. 74–77.
    [3] Ya-Tang Yang et al. “Zeptogram-scale nanomechanical mass sensing”. In:
    Nano Letters 6.4 (2006), pp. 583–586.
    [4] Brian S Dennis et al. “Compact nanomechanical plasmonic phase modulators”.
    In: Nature Photonics 9.4 (2015), pp. 267–273.
    [5] Karel Van Acoleyen et al. “Ultracompact phase modulator based on a cascade
    of NEMS-operated slot waveguides fabricated in silicon-on-insulator”.
    In: IEEE Photonics Journal 4.3 (2012), pp. 779–788.
    [6] Marcel W Pruessner et al. “Broadband opto-electro-mechanical effective refractive
    index tuning on a chip”. In: Optics Express 24.13 (2016), pp. 13917–
    13930.
    [7] William Hease et al. “Bidirectional electro-optic wavelength conversion in the
    quantum ground state”. In: PRX Quantum 1.2 (2020), p. 020315.
    [8] Moritz Forsch et al. “Microwave-to-optics conversion using a mechanical oscillator
    in its quantum ground state”. In: Nature Physics 16.1 (2020), pp. 69–
    74.
    [9] Nikolai Lauk et al. “Perspectives on quantum transduction”. In: Quantum
    Science and Technology 5.2 (2020), p. 020501.
    [10] Gershon Kurizki et al. “Quantum technologies with hybrid systems”. In: Proceedings
    of the National Academy of Sciences 112.13 (2015), pp. 3866–3873.
    [11] Taejoon Kouh, M Selim Hanay, and Kamil L Ekinci. “Nanomechanical motion
    transducers for miniaturized mechanical systems”. In: Micromachines 8.4
    (2017), p. 108.
    [12] Bo Xu et al. “Nanomechanical Resonators: Toward Atomic Scale”. In: ACS
    nano (2022).
    [13] Leo Sementilli, Erick Romero, andWarwick P Bowen. “Nanomechanical dissipation
    and strain engineering”. In: Advanced Functional Materials 32.3 (2022),
    p. 2105247.
    [14] Philip S Waggoner and Harold G Craighead. “Micro-and nanomechanical
    sensors for environmental, chemical, and biological detection”. In: Lab on a
    Chip 7.10 (2007), pp. 1238–1255.
    [15] Harold G Craighead. “Nanoelectromechanical systems”. In: Science 290.5496
    (2000), pp. 1532–1535.
    [16] Leonardo Midolo, Albert Schliesser, and Andrea Fiore. “Nano-opto-electromechanical
    systems”. In: Nature Nanotechnology 13.1 (2018), pp. 11–18.
    [17] Tobias J Kippenberg and Kerry J Vahala. “Cavity optomechanics: back-action
    at the mesoscale”. In: science 321.5893 (2008), pp. 1172–1176.
    [18] VB Braginski and AB Manukin. “Ponderomotive effects of electromagnetic
    radiation”. In: Sov. Phys. JETP 25.4 (1967), pp. 653–655.
    [19] Markus Aspelmeyer, Tobias J Kippenberg, and Florian Marquardt. “Cavity
    optomechanics”. In: Reviews of Modern Physics 86.4 (2014), p. 1391.
    [20] Nicolas Gisin and Rob Thew. “Quantum communication”. In: Nature photonics
    1.3 (2007), pp. 165–171.
    [21] Hua-Lei Yin et al. “Measurement-device-independent quantum key distribution
    over a 404 km optical fiber”. In: Physical review letters 117.19 (2016),
    p. 190501.
    [22] Alberto Boaron et al. “Secure quantum key distribution over 421 km of optical
    fiber”. In: Physical review letters 121.19 (2018), p. 190502.
    [23] Kai Sun et al. “Activation of indistinguishability-based quantum coherence
    for enhanced metrological applications with particle statistics imprint”. In:
    Proceedings of the National Academy of Sciences 119.21 (2022), e2119765119.
    [24] Reed W Andrews et al. “Bidirectional and efficient conversion between microwave
    and optical light”. In: Nature Physics 10.4 (2014), pp. 321–326.
    [25] David P DiVincenzo. “The physical implementation of quantum computation”.
    In: Fortschritte der Physik: Progress of Physics 48.9-11 (2000), pp. 771–783.
    [26] H Jeff Kimble. “The quantum internet”. In: Nature 453.7198 (2008), pp. 1023–
    1030.
    [27] Christoph Simon. “Towards a global quantum network”. In: Nature Photonics
    11.11 (2017), pp. 678–680.
    [28] Stephanie Wehner, David Elkouss, and Ronald Hanson. “Quantum internet:
    A vision for the road ahead”. In: Science 362.6412 (2018), eaam9288.
    [29] Stefano Pirandola et al. “Advances in photonic quantum sensing”. In: Nature
    Photonics 12.12 (2018), pp. 724–733.
    [30] Jianming Huang and Prem Kumar. “Observation of quantum frequency conversion”.
    In: Physical review letters 68.14 (1992), p. 2153.
    [31] Baleegh Abdo et al. “Full coherent frequency conversion between two propagating
    microwave modes”. In: Physical review letters 110.17 (2013), p. 173902.
    [32] Florent Lecocq et al. “Mechanically mediated microwave frequency conversion
    in the quantum regime”. In: Physical review letters 116.4 (2016), p. 043601.
    [33] CF Ockeloen-Korppi et al. “Low-noise amplification and frequency conversion
    with a multiport microwave optomechanical device”. In: Physical Review
    X 6.4 (2016), p. 041024.
    [34] He Jimin and Fu Zhi-Fang. Modal analysis. 2001.
    [35] Brian J Schwarz and Mark H Richardson. “Experimental modal analysis”. In:
    CSI Reliability Week 35.1 (1999), pp. 1–12.
    [36] Parikshit Mehta. “Vibrations of thin plate with piezoelectric actuator: theory
    and experiments”. In: (2009).
    [37] Silvan Schmid, Luis Guillermo Villanueva, and Michael Lee Roukes. Fundamentals
    of nanomechanical resonators. Vol. 49. Springer, 2016.
    [38] Thierry Le Van Suu, Stéphane Durand, and Michel Bruneau. “On the modelling
    of clamped plates loaded by a squeeze fluid film: application to miniaturised
    sensors”. In: Acta Acustica united with Acustica 96.5 (2010), pp. 923–
    935.
    [39] Qing-An Huang and Y Tai. Micro electro mechanical systems. Springer, 2018.
    [40] Peter Verboven. “Frequency-domain system identification for modal analysis”.
    2002.
    [41] J Scott Bunch et al. “Electromechanical resonators from graphene sheets”. In:
    Science 315.5811 (2007), pp. 490–493.
    [42] Gang Luo et al. “Strong indirect coupling between graphene-based mechanical
    resonators via a phonon cavity”. In: Nature Communications 9.1 (2018),
    pp. 1–6.
    [43] Zhuo-Zhi Zhang et al. “Coherent phonon dynamics in spatially separated
    graphene mechanical resonators”. In: Proceedings of the National Academy of
    Sciences 117.11 (2020), pp. 5582–5587.
    [44] Jin-Wu Jiang et al. “A review on the flexural mode of graphene: lattice dynamics,
    thermal conduction, thermal expansion, elasticity and nanomechanical
    resonance”. In: Journal of Physics: Condensed Matter 27.8 (2015), p. 083001.
    [45] Robert A Barton et al. “Photothermal self-oscillation and laser cooling of
    graphene optomechanical systems”. In: Nano Letters 12.9 (2012), pp. 4681–
    4686.
    [46] V Singh et al. “Optomechanical coupling between a multilayer graphene mechanical
    resonator and a superconducting microwave cavity”. In: Nature Nanotechnology
    9.10 (2014), pp. 820–824.
    [47] Peter Weber et al. “Force sensitivity of multilayer graphene optomechanical
    devices”. In: Nature Communications 7.1 (2016), pp. 1–8.
    [48] Robert De Alba et al. “Tunable phonon-cavity coupling in graphene membranes”.
    In: Nature Nanotechnology 11.9 (2016), p. 741.
    [49] John P Mathew et al. “Dynamical strong coupling and parametric amplification
    of mechanical modes of graphene drums”. In: Nature Nanotechnology 11.9
    (2016), p. 747.
    [50] Dejan Davidovikj et al. “Visualizing the motion of graphene nanodrums”. In:
    Nano Letters 16.4 (2016), pp. 2768–2773.
    [51] Changyao Chen et al. “Graphene mechanical oscillators with tunable frequency”.
    In: Nature Nanotechnology 8.12 (2013), pp. 923–927.
    [52] Banafsheh Sajadi et al. “Experimental characterization of graphene by electrostatic
    resonance frequency tuning”. In: Journal of Applied Physics 122.23
    (2017), p. 234302.
    [53] Shamashis Sengupta et al. “Electromechanical resonators as probes of the
    charge density wave transition at the nanoscale in NbSe2”. In: Physical Review
    B 82.15 (2010), p. 155432.
    [54] MWill et al. “High quality factor graphene-based two-dimensional heterostructure
    mechanical resonator”. In: Nano Letters 17.10 (2017), pp. 5950–5955.
    [55] Wen-Ming Zhang et al. “Tunable micro-and nanomechanical resonators”. In:
    Sensors 15.10 (2015), pp. 26478–26566.
    [56] Andres Castellanos-Gomez et al. “Deterministic transfer of two-dimensional
    materials by all-dry viscoelastic stamping”. In: 2D Materials 1.1 (2014), p. 011002.
    [57] Gaurav Pande et al. “Ultralow Schottky Barriers in Hexagonal Boron Nitride-
    Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors”. In: ACS Applied
    Materials & Interfaces 12.16 (2020), pp. 18667–18673.
    [58] Myrron Albert Callera Aguila et al. “Fabry–Perot interferometric calibration
    of van der Waals material-based nanomechanical resonators”. In: Nanoscale
    Advances 4.2 (2022), pp. 502–509.
    [59] Tolga Bagci et al. “Optical detection of radio waves through a nanomechanical
    transducer”. In: Nature 507.7490 (2014), pp. 81–85.
    [60] TA Palomaki et al. “Coherent state transfer between itinerant microwave
    fields and a mechanical oscillator”. In: Nature 495.7440 (2013), pp. 210–214.
    [61] Yilei Li et al. “Measurement of the optical dielectric function of monolayer
    transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2”. In: Physical
    Review B 90.20 (2014), p. 205422.
    [62] Yahav Ben-Shimon and Assaf Yaákobovitz. “Magnetic excitation and dissipation
    of multilayer two-dimensional resonators”. In: Applied Physics Letters
    118.6 (2021), p. 063103.
    [63] Jaesung Lee et al. “High frequency MoS2 nanomechanical resonators”. In:
    ACS Nano 7.7 (2013), pp. 6086–6091.
    [64] Zenghui Wang et al. “Black phosphorus nanoelectromechanical resonators
    vibrating at very high frequencies”. In: Nanoscale 7.3 (2015), pp. 877–884.
    [65] Xu-Qian Zheng, Jaesung Lee, and Philip X-L Feng. “Hexagonal boron nitride
    nanomechanical resonators with spatially visualized motion”. In: Microsystems
    & Nanoengineering 3.1 (2017), pp. 1–8.
    [66] Arnob Islam, Anno van den Akker, and Philip X-L Feng. “Anisotropic thermal
    conductivity of suspended black phosphorus probed by opto-thermomechanical
    resonance spectromicroscopy”. In: Nano Letters 18.12 (2018), pp. 7683–7691.
    [67] Yanan Wang et al. “Hexagonal boron nitride phononic crystal waveguides”.
    In: ACS Photonics 6.12 (2019), pp. 3225–3232.
    [68] Jun Ma et al. “Fiber-optic ferrule-top nanomechanical resonator with multilayer
    graphene film”. In: Optics Letters 39.16 (2014), pp. 4769–4772.
    [69] Zenghui Wang et al. “Resolving and tuning mechanical anisotropy in black
    phosphorus via nanomechanical multimode resonance spectromicroscopy”.
    In: Nano Letters 16.9 (2016), pp. 5394–5400.
    [70] Zenghui Wang and Philip X-L Feng. “Interferometric motion detection in
    atomic layer 2D nanostructures: visualizing signal transduction efficiency
    and optimization pathways”. In: Scientific Reports 6.1 (2016), pp. 1–11.
    [71] Thein Wah. “Vibration of circular plates”. In: the Journal of the Acoustical Society
    of America 34.3 (1962), pp. 275–281.
    [72] Xiaoming Chen, Chenglin Yi, and Changhong Ke. “Bending stiffness and
    interlayer shear modulus of few-layer graphene”. In: Applied Physics Letters
    106.10 (2015), p. 101907.
    [73] Yilun Liu, Zhiping Xu, and Quanshui Zheng. “The interlayer shear effect on
    graphene multilayer resonators”. In: Journal of the Mechanics and Physics of
    Solids 59.8 (2011), pp. 1613–1622.
    [74] Vera A Sazonova. “A tunable carbon nanotube resonator”. PhD thesis. Cornell
    University, 2006.
    [75] George R Buchanan and John Peddieson. “A finite element in elliptic coordinates
    with application to membrane vibration”. In: Thin-Walled Structures
    43.9 (2005), pp. 1444–1454.
    [76] SunPhil Kim, Jaehyung Yu, and ArendMvan der Zande. “Nano-electromechanical
    Drumhead Resonators from Two-Dimensional Material Bimorphs”. In: Nano
    Letters 18.11 (2018), pp. 6686–6695.
    [77] Matti Tomi et al. “Buckled diamond-like carbon nanomechanical resonators”.
    In: Nanoscale 7.35 (2015), pp. 14747–14751.
    [78] ZenghuiWang et al. “Embracing structural nonidealities and asymmetries in
    two-dimensional nanomechanical resonators”. In: Scientific Reports 4 (2014),
    p. 3919.
    [79] Zenghui Wang, Jaesung Lee, and Philip X-L Feng. “Spatial mapping of multimode
    Brownian motions in high-frequency silicon carbide microdisk resonators”.
    In: Nature Communications 5.1 (2014), pp. 1–11.
    [80] Xu-Qian Zheng et al. “Ultrawide band gap b-Ga2O3 nanomechanical resonators
    with spatially visualized multimode motion”. In: ACS Applied Materials
    & Interfaces 9.49 (2017), pp. 43090–43097.
    [81] Reimar Waitz et al. “Mode shape and dispersion relation of bending waves
    in thin silicon membranes”. In: Physical Review B 85.3 (2012), p. 035324.
    [82] Fan Yang et al. “Spatial modulation of nonlinear flexural vibrations of membrane
    resonators”. In: Physical review letters 122.15 (2019), p. 154301.
    [83] Atsushi Noguchi et al. “Ground state cooling of a quantum electromechanical
    system with a silicon nitride membrane in a 3D loop-gap cavity”. In: New
    Journal of Physics 18.10 (2016), p. 103036.
    [84] William Weaver Jr, Stephen P Timoshenko, and Donovan Harold Young. Vibration
    problems in engineering. John Wiley & Sons, 1990.
    [85] ArthurWLeissa. Vibration of plates. Vol. 160. Scientific and Technical Information
    Division, National Aeronautics and . . ., 1969.
    [86] C Rajalingham, RB Brat, and GD Xistris. “A note on elliptical plate vibration
    modes as a bifurcation from circular plate modes”. In: International Journal of
    Mechanical Sciences 37.1 (1995), pp. 61–75.
    [87] Dejan Davidovikj. “Two-dimensional membranes in motion”. PhD thesis.
    Delft University of Technology, 2018.
    [88] Dejan Davidovikj et al. “Nonlinear dynamic characterization of two-dimensional
    materials”. In: Nature Communications 8.1 (2017), pp. 1–7.
    [89] Theodor Krauthammer. Thin plates and shells: theory, analysis and applications.
    Dekker, 2001.
    [90] CL Wong et al. “Characterization of nanomechanical graphene drum structures”.
    In: Journal of Micromechanics and Microengineering 20.11 (2010), p. 115029.
    [91] Piaras Kelly. “Solid Mechanics Part II: Engineering Solid Mechanicssmall
    strain”. In: The University of Auckland (2013).
    [92] Banafsheh Sajadi, Hans Goosen, and Fred van Keulen. “Electrostatic instability
    of micro-plates subjected to differential pressure: A semi-analytical approach”.
    In: International Journal of Mechanical Sciences 138 (2018), pp. 210–218.
    [93] Boris Grigor’evich Korenev. Bessel functions and their applications. CRC Press,
    2002.
    [94] Changyao Chen. “Graphene NanoElectroMechanical Resonators and Oscillators”.
    PhD thesis. Columbia University, 2013.
    [95] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Course of theoretical
    physics. Elsevier, 2013.
    [96] Jaesung Lee et al. “Electrically tunable single-and few-layer MoS2 nanoelectromechanical
    systems with broad dynamic range”. In: Science Advances 4.3
    (2018), p. 6653.
    [97] Cameron J Shearer et al. “Accurate thickness measurement of graphene”. In:
    Nanotechnology 27.12 (2016), p. 125704.
    [98] Andrea C Ferrari et al. “Raman spectrum of graphene and graphene layers”.
    In: Physical review letters 97.18 (2006), p. 187401.
    [99] Changyao Chen et al. “Performance of monolayer graphene nanomechanical
    resonators with electrical readout”. In: Nature nanotechnology 4.12 (2009),
    pp. 861–867.
    [100] Dejan Davidovikj et al. “Static capacitive pressure sensing using a single
    graphene drum”. In: ACS applied materials & interfaces 9.49 (2017), pp. 43205–
    43210.
    [101] David B Northeast and Robert G Knobel. “Suspension and simple optical
    characterization of two-dimensional membranes”. In: Materials Research Express
    5.3 (2018), p. 035023.
    [102] HJR Westra et al. “Nonlinear modal interactions in clamped-clamped mechanical
    resonators”. In: Physical Review Letters 105.11 (2010), p. 117205.

    QR CODE