簡易檢索 / 詳目顯示

研究生: 李志勛
Chih-Hsun Lee
論文名稱: 分子束磊晶成長單斜晶系氧化釓於(0001)氮化鎵基材之特性研究
Structural Investigation of Monoclinic Phase Gd2O3 Epitaxially grown on GaN (0001) by MBE
指導教授: 洪銘輝
Ming-Hwei Hong
郭瑞年
Ray-Nien Kwo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 53
中文關鍵詞: 單斜晶X光散射繞射分子束磊晶氧化釓氮化鎵
外文關鍵詞: Monoclinic, X-ray scattering, Diffraction, Molecular beam epitaxy, Gd2O3, GaN
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由分子束磊晶技術,高品質奈米尺寸單晶氧化釓薄膜成功地磊晶
    在(0001)晶面的氮化鎵基材上。
    利用同步輻射高亮度、高解析度X光繞射技術,以及高解析度穿透
    式電子顯微鏡技術,可有效地研究超薄磊晶薄膜之結構特性。臨場
    反射式高能電子繞射的圖形亦幫助我們來了解磊晶成長時薄膜之結
    構形態。磊晶高介電之氧化釓薄膜之電性分析在此研究中也將討論到。
    此磊晶氧化釓薄膜具有高溫相的單斜晶結構,以(012)平面於(0001)
    晶向之氮化鎵基材上磊晶成長,在平面上則以氧化釓 [020] //氮化
    鎵 [1120]的結晶方向為主。高溫退火後具有極佳的漏電流密度,約
    為4.6×10-9安培╱平方公分,可能與實驗觀測到的晶粒成長有關。


    High-quality single-crystal Gd2O3 nano films have been grown epitaxially on GaN (0001). The films were electron beam evaporated from powder-packed and sintered Gd2O3 target at a substrate temperature of 700°C by molecular beam epitaxy (MBE).
    Structural studies were carried out by x-ray diffraction using a synchrotron radiation source, and cross sectional high-resolution transmission electron microscopy (HRTEM). The growth was in-situ monitored by reflection high energy electron diffraction. Electrical measurements of I-V and
    C-V characteristics were also carried out.
    The films adopt the high temperature monoclinic phase with six domains. The films are well aligned with the
    GaN substrate with an orientation relationship of
    Gd2O3 (012)m // GaN (0001), and a dominant in-plane expitaxy of Gd2O3 [020]m // GaN [1120]. Excellent leakage performance (JL~4.6x10-9 A/cm2 at 1MV/cm) is observed after 1100oC RTP, possibly due to a significant domain size increase by ~ 3 times as revealed by grazing incidence x-ray diffraction data together with the Williamson-Hall plot analysis.

    Table of Contents…………………………………I Table Captions……………………………………III Figure Captions……………………………………IV Chapter 1 Structural Investigation of Gd2O3 Thin Films on GaN………………1 1.1 Introduction………………………………………………….1 1.2 Research Background…………………………………………3 1.2.1 Gd2O3 on Si(111)……………………………………….3 1.2.2 Gd2O3 on GaN(0001)…………………………………….4 Chapter 2 Instrumentation and Theories……………………….5 2.1 Structural Characterization by X-Ray Scattering……5 2.1.1 X-Ray Scattering Techniques…………………………5 2.1.2 Principles of X-Ray Diffraction……………………5 2.1.2.1 The Basic Phenomenon…………………………….5 2.1.2.2 The Reciprocal Lattice………………………….6 2.1.2.3 Structure Factor and Selection Rule……….10 2.1.2.4 Finite Size Effect and Scherrer's formula.12 2.1.2.5 Strain-Induced Peak Broadening………………15 2.1.2.6 Broadening of Size and Strain Separation-Williamson-Hall Plot…17 2.1.3 Longitudinal Scans……………………………………18 Chapter 3 Experimental Procedure………………………………20 3.1 Deposition Process in Integrated MBE System……….20 3.1.1 Substrate Preparation……………………………….20 3.1.2 Oxide Deposition………………………………………21 3.2 Structural Characterizations……………………………21 3.2.1 High Resolution Transmission Electron Microscope (HRTEM)……21 3.2.2 X-Ray Scattering and Reflectivity……………….21 3.3 Electrical Properties Measurement…………………….22 Chapter 4 Results and Discussion………………………………23 4.1 Structural Characteristics………………………………23 4.1.1 Crystallinity of Epitaxial Gd2O3 Thin Films from RHEED……………23 4.1.2 Structure Analysis……………………………………25 4.2 Electrical Properties related to structure variation after RTP ……44 4.2.1 J-E characteristics………………………………….44 Chapter 5 Conclusion………………………………………………47 Chapter 6 Further Works………………………………………….49 6.1 Ga2O3(Gd2O3) on GaN……………………………………….49 6.1.1 Oxide Deposition………………………………………49 6.1.2 Structure Analysis……………………………………50 References……………………………………………………………52

    [1] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, IEEE Electron Device Lett. 20, 161 (1999).
    [2] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).
    [3] M. Higashiwaki, T. Matsui, and T. Mimura, IEEE Electron Device Lett. 27, 16 (2006).
    [4] T. P. Chow, Proc. Mater. Res.Soc. Spring Meeting 622, T1.1.1 (2000).
    [5] B. Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).
    [6] W. Huang, T. Khan, and T. P. Chow, IEEE Electron Device Lett. 27, 796 (2006).
    [7] H. B. Lee, H. I. Cho, H. S. An, Y. H. Bae, M. B. Lee, J. H. Lee, and S. H. Hahm, IEEE Electron Device Lett. 27, 81 (2006).
    [8] M. Hong, K. A. Anselm, J. P. Mannaerts, J. Kwo, A. Y. Cho, A. R. Kortan, C. M. Lee, J. I. Chyi, and T. S. Lay, J. Vac. Sci. Technol. B18, 1453 (2000).
    [9] Y.C. Chang, Y.J. Lee, Y.N. Chiu, T.D. Lin, S.Y. Wu, H.C. Chiu, J. Kwo, Y.H. Wang, and M. Hong, J. Cryst. Growth 301-302, 390 (2007).
    [10] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).
    [11] Y. Q. Wu, P. D. Ye, G. D. Wilk, and B. Yang, Mater. Sci. Eng. B 135, 282 (2006).
    [12] Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, Appl. Phys. Lett. 93, 053504 (2008)
    [13] Y. Irokawa, Y. Nakano, M. Ishiko, T. Kachi, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, and J. I. Chyi, Appl. Phys. Lett. 84, 2919 (2004).
    [14] J. Kim, R. Mehandru, B. Luo, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, and Y. Irokawa, Appl. Phys. Lett. 80, 4555 (2002).
    [15] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo, and Y. H. Wang, Appl. Phys. Lett. 90, 232904 (2007).
    [16] Hong M, Kwo J, Chu SNG, Mannaerts JP, Kortan AR, Ng HM, Cho AY, Anselm KA, Lee CM, Chyi JI, J. Vac. Sci. Technol. B20, 1274 (2002).
    [17] T.D. Lin, M.C. Hang, C.H. Hsu, J. Kwo, and M. Hong, J. Cryst. Growth 301-302, 386 (2007).
    [18] M. Birkholz, Thin Film Analysis by X-ray Scattering, Wiley (2006).
    [19] Azaroff, L. V., R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, and R. A. Young, 1974, X-Ray Diffraction (McGraw-Hill, New York).
    [20] A. Yu Babkevich, R.A. Cowley, N.J. Mason, S. Sandiford, A. Stunault,
    J. Phys.: Condens. Matter, 7101, 14 (2002).
    [21] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou and V. J. Fratello, J. Vac. Sci. Technol. B 14, 2297 (1996).
    [22] L. Tapfer, W. Stolz, K.H. Ploog, J. Appl. Phys. 66 (1989) 3217.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE