簡易檢索 / 詳目顯示

研究生: 丁耀柏
Yau-Bo Ding
論文名稱: 以超臨界流體去除晶圓上之光阻
Photoresist Stripping by Supercritical Fluid
指導教授: 談駿嵩
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 光阻超臨界流體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當半導體元件尺寸愈接近奈米等級時,使用傳統的濕式或乾式清洗的方式進行光阻劑的去除將愈來愈難。不僅如此,傳統去除光阻之方法不僅十分耗費日益珍貴的水資源,也需要使用十分大量且具有危險性的化學物質。而超臨界流體幾乎沒有表面張力且黏度極低,使得超臨界流體能更貼近物體表面,因而與現有的技術相比,更能滲入高深寬比的溝渠將光阻劑完全去除。而且以超臨界二氧化碳作為光阻去除時,由於容易取得且安全並符合環保要求,對於化學藥劑的減量也有相當程度的增益。
    本研究是使用超臨界二氧化碳作為載體,利用其可膨潤(Swelling)光阻高分子的特性,再搭配共溶劑對光阻高分子產生氧化、溶解、侵蝕等作用,來破壞高分子結構之完整性,此外亦利用半連續式與批式增減壓之操作來加強上述之效應,進一步的將光阻剝除於晶圓的表面,達到剝除光阻的目的。
    本研究亦採用了直接噴灑的操作方式,藉由其高動量及共溶液與光阻層直接接觸的效果來對光阻進行剝除。結果顯示對酚醛樹脂光阻與壓克力樹脂光阻中的剝除效果皆十分理想,能夠在短時間內即達到將光阻層大部分剝除的效果。


    摘要 Ⅰ 目錄 Ⅱ 表目錄 Ⅳ 圖目錄 Ⅴ 第一章 緒論 1 第二章 文獻回顧 4 2-1超臨界流體簡介 4 2-2光阻簡介 5 2-3現行的光阻去除技術 8 2-4 目前清洗方法所遇到之問題 9 2-5 SCORR製程介紹 11 2-6 基底 14 2-7 共溶劑 15 2-8 操作方式 16 2-9 操作溫度與壓力 17 2-10 Snow 簡介 19 2-10-1 Snow生成原理 19 2-10-2 Snow 清洗機制 20 第三章 實驗方法 40 3-1 光阻剝除實驗 40 3-1-1 實驗前置步驟 40 3-1-2 非直接噴灑連續式流動實驗 41 3-1-3 非直接噴灑增減壓混合式實驗 41 3-1-4 直接噴灑實驗 42 3-2 分析方法 43 3-3 實驗儀器 43 3-4 實驗藥品與晶圓樣品 45 第四章 實驗結果與討論 53 4-1 酚醛樹脂光阻實驗結果 53 4-1-1 非直接噴灑操作實驗結果 53 4-1-1-1 不同共溶劑之實驗結果 53 4-1-1-2 不同高低壓滯留時間之影響 56 4-1-2 直接噴灑操作實驗結果 56 4-1-2-1 不同共溶劑下對於實驗之結果 57 4-1-2-2 不同溫度下對於實驗之結果 58 4-1-2-3 不同壓力下對於實驗之結果 58 4-1-2-4 不同噴頭角度下對於實驗之結果 59 4-2壓克力樹脂型光阻實驗結果 59 4-2-1直接噴灑操作實驗結果 60 第五章 結論 85 參考文獻 87

    Biberger, M. A.; Schilling, P.; Frye, D.; Mills, M. E. Photoresist and Photoresist Residue Removal with Supercritical CO2 A Noval Approach to Cleaning Wafers. Semiconductor Fabtech. 2000, 12, 239-243.

    Brandt, W. V. Cleaning of Photomask Substrates Using CO2 Snow. Eco-Snow Systems Inc. Available at http://www1.boc.com/eco-snow/pdf/Bacus%202001.pdf

    Chandra, M.; Mount, D.; Costantini, M. A.; Moritz, H. D.; Jafri, I.; Boyd, J.; Heathwaite, R. M. Supercritical Fluid Cleaning Process for Precision Surfaces. US Patent 6602349, 2003.

    Chow, T. S. Molecular Interpretation of Glass Transition Temperature of Polymer-Diluent Systems. Macromolecules. 1980, 13, 362-364.

    Davenhall, L. B.; Rubin, J. B.; Taylor, C. M. V. Composition and Method for Removing Photoresist Materials from Electronic Components. US Patent App 20030181343, 2003.

    DeYoung, J. P.; Gross, S. M.; Wagner, M. I.; McClain, J. B. Methods and Compositions for Etch Cleaning Microelectronic Substates in Carbon Dioxide. U.S. Patent App 20030216269, 2003.

    DeYoung, J. P.; McClain, J. B.; Gross, S. M. Processes for Cleaning and Drying Microelectronic Structures Using Liquid or Supercritical Carbon Dioxide. U.S Patent 6562146, 2003.
    David, J. M.; Laura, B. R.; Raymond, J. R.; Mir, K. A. The Technology Behind Cleaning With Supercritical Fluids. Solid State Technology. 2002, July, 103-109.

    Hoening, S. A. Compressed Air Magazine, 1986,Auguest, 22.

    Jacobon, G.; Palmer, B.; Yellowaga, D.; Lowe, M.; Toma, D.; Hillman, J.; Biberger, M. Cleaning of Photoresist and Etch Residue from Low-k Dielectrics using Supercritical CO2. Available at http://www.cmc.neu.edu/surfacecleaning2003/pdfs/Jacobson_abstract.pdf

    Joyce, P. C.; Tipton, A.; Shrinivasan, K.; Hess, D. W.; Myneni, S.; Levitin, G. Supercritical Solutions for Cleaning Photoresist and Post-Etch Residue From Low-k Materials. US Patent 674552,2004.

    King, J. W.; Williams, L. L. Utilization of Critical Fluids in Processing Semiconductors and Their Related Materials. J.COSSMS. 2003, 7, 413-424.

    Korzenski, M. B.; Ghenciu, E. G.; Xu, C.; Baum, T. H. Supercritical Carbon Dioxide/Chemical Formulation for Removal of Photoresists. U.S. Patent App 20040087457, 2004.

    Korzenski, M. B.; Baum, T. H. Non-Fluoride Containing Supercritical Fluid Composition for Removal of Ion-Implant Photoresist. US Patent App 20040198622, 2004.

    Garcia-Leiner, M.; Lesser, A. CO2-Assisted Polymer Processing: A New Alternative For Intractable Polymers. J.Appl.Polym.Sci. 2004, 93, 1501-1508.

    McDermott, W. T.; Subawalla, H.; Johnson, A. D.; Schwarz, A. Processing of Semiconductor Components with Dense Processing Fluids and Ultrasonic Energy. US Patent App 20040055621, 2004.

    Mullee, W. H. Removal of Resist or Residue from Semiconductors Using Supercritical Carbon Dioxide. US Patent 6306564, 2001.

    Mullee, W. H.; Biberger, M. A.; Schilling, P. E. Removal of Photoresist and Residue from Substrate Using Supercritical Carbon Dioxide Process. US Patent 6500605, 2002.

    Mullee, W. H. Removal of Photoresist and Photoresist Residue from Semiconductors Using Supercritical Carbon Dioxide Process. US Paternt 6509141, 2003.

    Myneni, S.; Hess, D. W. Post-Plasma-Etch Residue Removal Using CO2-Based Fluids. J.Ecs. 2003, 12, G744-750.

    Reidy, R. F.; Zhang, Z.; Orzco-Teran, R. A.; Gorman, B. O.; Mueller, D. W. Effects of Supercritical CO2 Drying and Photoresist Strip on Low-k Films. Deparment of Materials Science and Engineering, University of North Texas.

    Rothman, L. B.; Robey, R. J.; Ali, M. K.; Mount, D. J. Supercritical Fluid Process for Semiconductor Device Fabrication. Avabile at www.scfluids.com.

    Rubin, J. B.; Davenhall, L. B.; Barton, J. A Comparison of Chilled DI Water/Ozone and CO2-Based Supercritical Fluids as Replacements for Photoresist-Stripping Solvents. IEEE/CPMT Int. Electron Manuf. Technolo. Symp. 23rd, Insitute of Electrical and Electronics Engineers. 1998.

    Sehgal, A. Compositions and Method for Removing Photoresist and/or Resist Residue at Pressures Ranging from Ambient to supercritical. US Patent App 20040050406, 2004.

    Sherman, R.; Grob, J.; Whitlock W. Dry Surface Cleaning Using CO2 Snow. J.Vac.Sci.Technol. 1991,B9(4),1970-1976

    Song, J. I.; Novak, R.; Kashkoush I.; Boelen, P. Using an Ozonated-DI-Water Technology for Photoresist Removal. Available at www.akrion.com/apex/pdfs/microdio3.pdf.

    The International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2003.

    Tipton, A. K.; Shrinivasan, K.; Banerjee, S.; Humayun, R.; Joyce, P. C. Method for Removing Photoresist and Post-Etch Residue Using Activated Peroxide Followed by Supercritical Fluid Treatment. US Patent 6800142,2004.

    Willams, L. L.; Mas, E. M.; Rubin, J. B. Vapor-Liquid Equilibrium in the CO2-PCO3 System at High Pressure. J.Chem.Eng.Data.2002,47,282-285.

    Williams, L. L. Removal of Polymer Coating with Supercritical Carbon Dioxide. Avaiable at www.lanl.gov 2001.

    Xu, C.; Minsek, D. W.; Roeder, J. F.; Korzenski, M. B.; Baum,T. H. Supercritical fluid cleaning of semiconductor substrates. US Patent App 20030125225, 3 July 2003.

    謝欣佐, 楊致行, 蘇育任. 電子業之環保策略. http://www.giee.ntnu.edu.tw/workshop/paper.htm.

    廖伯佑, 李盈壕. 半導體製程用濕式化學品的發展趨勢. 伊默克化學科技. http://www.tsia.org.tw/industry/msg.asp .

    簡弘民, 盧信忠, 黃尊祐, 蔡春進. 半導體晶圓表面清洗技術發展. 勞工安全衛生研究季刊, 7:2 民88.06 頁209-229.

    何邦慶, 甲基丙烯腈╱甲基丙烯酸共聚合物與聚亞醯胺光阻劑之研究, 博士論文, 國立清華大學化工所, 1992.

    楊勝仲, 楊宗鑫, 郭子禎. CO2 Snow自動化噴洗技術. 金屬工業研究發展中心.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE