研究生: |
薩 欽 Kumar, Sunkuru Sachin |
---|---|
論文名稱: |
氧化鋅奈米柱為基礎三元奈米複合材料氣體感測器之大氣與成長參數效應 Effects of Atmospheric and Growth Parameters on Zinc Oxide Nanorod Based Ternary Nanocomposite Gas Sensors |
指導教授: |
林鶴南
Lin, Heh-Nan |
口試委員: |
徐文光
Hsu, Wen-Kuang 廖建能 Liao, Chien-Neng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 氣體感測 、NO2 感測 、三元奈米複合材料 、氧化鋅 、奈米柱 、濕度 、溫度 |
外文關鍵詞: | Gas Sensing, NO2 sensing, Ternary Nanocomposite, Zinc Oxide, Nanorods, Humidity, Temperature |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同成長參數與材料堆疊順序,將氧化鋅、銅氧化物、金組成三元奈米複合材料,作為化學電阻式NO2氣體感測器,目標是在室溫下達到高穩定性及高靈敏度的氣體感測應用,並對環境參數如溫溼度對氣體感測影響進行探討。
先以低溫水熱法於基板上製備ZnO奈米柱(nanorod),並進行高溫退火,然後透過光還原法,將 CuxO奈米團簇(nanoclusters)與Au奈米粒子(nanoparticles, NPs)成長在ZnO奈米柱上。依照不同光還原次序,製備Au/Cu_x O/ZnO (Au在最外)與CuxO/Au/ZnO (CuxO在最外)兩種三元奈米複合材料,同時CuxO有三種不同還原時間,共製備六種樣品。
掃描式電子顯微鏡(SEM)用來觀察奈米複合材料的表面形貌,ZnO奈米柱呈現六角形,平均直徑約100 nm。CuxO奈米團簇在Au/CuxO/ZnO與CuxO/Au/ZnO上的大小分別約為400 nm與200 nm。Au奈米粒子只在Cu_x O奈米團簇上可見,大小約30 nm,而CuxO奈米團簇在CuxO/Au/ZnO的分布密度較高。並以螢光光譜(PL)分析電荷分離現象、能隙與缺陷的存在,能量分散式能譜(EDS)來了解試片中的元素組成,X射線光電子能譜(XPS)來分析Cu2O與CuO在 CuxO奈米團簇的組成比。
氣體感測以NO2作為測試氣體,在100 ppb NO2,還原6小時的Au/CuxO/ZnO樣品具有最高響應值為680%。對濕度效應,電阻會先隨濕度增加而下降,但在達到臨界濕度後,電阻反而隨濕度增加上升。臨界濕度取決於存在的缺陷數量,大量受體缺陷會得到較高臨界濕度。響應會先隨著濕度上升而上升,達到臨界濕度後,響應隨濕度增加而下降。隨著溫度上升,試片的電阻與響應都隨之下降。此外也發現Au/CuxO/ZnO樣品,因溫濕度造成的電阻變化較大,在43天長期測試,CuxO/Au/ZnO樣品具有較佳穩定性。由於樣品含有CuxO試片,在連續紫外光照射下,產生自我氧化及還原,因此會有不穩定狀況。最後並使用自製的可攜式氣體感測裝置,進行試片的長期測試。
總之,我們製作了CuxO/Au/ZnO與Au/CuxO/ZnO奈米複合材料,並應用於NO2氣體感測。CuxO/Au/ZnO奈米複合材料展示較高穩定性,在溫溼度條件變化時有較低的變化。而溫溼度影響並非線性,高溫下濕度造成的變化較低,高濕度下溫度造成的變化較低。
Ternary nanocomposites comprising of zinc oxide, copper oxide and gold are prepared with different growth parameters and different sequence of material stacking for realizing a chemiresistive NO2 gas sensor. The goal of this work is to achieve highly stable and highly sensitive sensors for room temperature practical application. The effects of environmental parameters like temperature and humidity on the resistance and gas sensing performance are also investigated.
ZnO nanorods (NRs) are grown using a low-temperature hydrothermal method. CuxO nanoclusters (NCs) and Au nanoparticles (NPs) are then reduced on annealed ZnO NRs using photoreduction method. Au/CuxO/ZnO and CuxO/Au/ZnO ternary nanocomposite are prepared with three different reduction times for CuxO deposition, six samples in total.
Scanning electron microscopy (SEM) is used for morphology analysis of the fabricated sensors. The NRs have a hexagonal shape with an average diameter of ~100 nm. CuxO NCs ~400 nm and ~200 nm are found in Au/CuxO/ZnO and CuxO/Au/ZnO respectiveley. Au NPs are found only on CuxO NCs with a size of ~30 nm. The density of CuxO NCs distribution is higher in case of CuxO/Au/ZnO. The photoluminescence (PL) is used for analyzing the charge separation, bandgap and presence of defects qualitatively. Energy Dispersion Spectroscopy (EDS) is used to better understand the elemental composition in the sample. In addition, X-ray Photoelectron Spectroscopy (XPS) is used to analyze amounts of Cu2O and CuO that constituent the CuxO NCs in fabricated samples.
The sensing response in this work is performed using NO2 as a target gas. The highest response we got is 680% for 100 ppb NO2incase of Au/CuxO/ZnO reduced for 6 hrs. In all the six sensors, resistance first decreased with increase in relative humidity (RH) and after reaching a threshold RH, the resistance increased with further increase in RH. This threshold RH depends on the number of defects present, high amount of donor defect results in lower threshold RH. In the case of response, with increase in RH it first increases and after a threshold RH, it decreases with further increase in RH. The threshold RH here becomes lower if higher amount of acceptor defects is present. With the increase in temperature, the resistance and response both decreases. The variation in resistance due to humidity and temperature is higher in the case of Au/CuxO/ZnO samples. A 43-day long stability analysis shows that CuxO/Au/ZnO sample is more stable. The reason behind the instability in these samples containing CuxO turned out to be the self-oxidization/self-reduction of CuxO under continuous ultra-violet irradiation. In the final segment of this work, long-term real-life measurement is done for fabricated samples using the portable device developed from our group.
In conclusion, we produced CuxO/Au/ZnO and Au/CuxO/ZnO ternary nanocomposites for NO2 gas sensing. The CuxO/Au/ZnO nanocomposite showed higher stability and lower variation to change in environment parameters like temperature and humidity. Effect of humidity and temperature are not linear. Variation due to RH is found to be lower in higher temperature and variation due to temperature is found to be lower in higher RH.
[1] I. Air, B. Munksgaard, and I. A. I. R. Issn, “Indoor air quality , ventilation and health symptoms in schools : an analysis of existing information,” Indoor Air, vol. 13, no. 1, pp. 53–64, 2003.
[2] K. Koistinen et al., “The INDEX project: Executive summary of a European Union project on indoor air pollutants,” Allergy Eur. J. Allergy Clin. Immunol., vol. 63, no. 7, pp. 810–819, 2008.
[3] J. Sundell, “On the history of indoor air quality and health,” Indoor Air, Suppl., vol. 14, no. SUPPL. 7, pp. 51–58, 2004.
[4] M. Penza and E. N. A. Consortium, “COST action TD1105: Overview of sensor-systems for air-quality monitoring,” Procedia Eng., vol. 87, pp. 1370–1377, 2014.
[5] O. Geiss, G. Giannopoulos, S. Tirendi, J. Barrero-Moreno, B. R. Larsen, and D. Kotzias, “The AIRMEX study - VOC measurements in public buildings and schools/kindergartens in eleven European cities: Statistical analysis of the data,” Atmos. Environ., vol. 45, no. 22, pp. 3676–3684, 2011.
[6] N. E. Klepeis et al., “The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol., vol. 11, no. 3, pp. 231–252, 2001.
[7] P. S. Burge, “Sick building syndrome,” Occup. Environ. Med., vol. 61, no. 2, pp. 185–190, 2004.
[8] J. Ten Brinke et al., “Development of new nolatile organic compound (VOC) exposure metrics and their relationship to ‘Sick Building Syndrome’ symptoms,” Indoor Air, vol. 8, no. 3, pp. 140–152, 1998.
[9] J. A. Hagen, P. Nafstad, A. Skrondal, S. Bjørkly, and P. Magnus, “Associations between outdoor air pollutants and hospitalization for respiratory diseases,” Epidemiology, vol. 11, no. 2, pp. 136–140, 2000.
[10] G. A. Pilidis, S. P. Karakitsios, P. A. Kassomenos, E. A. Kazos, and C. D. Stalikas, “Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups,” Environ. Monit. Assess., vol. 150, no. 1–4, pp. 285–294, 2009.
[11] T. Yorifuji et al., “Long-term exposure to traffic-related air pollution and the risk of death from hemorrhagic stroke and lung cancer in Shizuoka, Japan,” Sci. Total Environ., vol. 443, pp. 397–402, 2013.
[12] Z. J. Andersen et al., “Stroke and long-term exposure to outdoor air pollution from nitrogen dioxide: A cohort study,” Stroke, vol. 43, no. 2, pp. 320–325, 2012.
[13] M. Shima and M. Adachi, “Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren,” Int. J. Epidemiol., vol. 29, no. 5, pp. 862–870, 2000.
[14] A. P. Jones, “Indoor air quality and health,” Dev. Environ. Sci., vol. 1, no. C, pp. 57–115, 2002.
[15] H. Guo, S. C. Lee, L. Y. Chan, and W. M. Li, “Risk assessment of exposure to volatile organic compounds in different indoor environments,” Environ. Res., vol. 94, no. 1, pp. 57–66, 2004.
[16] J. A. Bernstein et al., “The health effects of nonindustrial indoor air pollution,” J. Allergy Clin. Immunol., vol. 121, no. 3, pp. 585–591, 2008.
[17] S. N. Yin et al., “A cohort study of cancer among benzene-exposed workers in China: Overall results,” Am. J. Ind. Med., vol. 29, no. 3, pp. 227–235, 1996.
[18] J. Lelieveld, J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer, “The contribution of outdoor air pollution sources to premature mortality on a global scale,” Nature, vol. 525, no. 7569, pp. 367–371, 2015.
[19] M. J. Neidell, “Air pollution, health, and socio-economic status: The effect of outdoor air quality on childhood asthma,” J. Health Econ., vol. 23, no. 6, pp. 1209–1236, 2004.
[20] C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, and G. D. Thurston, “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” J. Am. Med. Assoc., vol. 287, no. 9, pp. 1132–1141, 2002.
[21] G. D’Amato, G. Liccardi, M. D’Amato, and M. Cazzola, “Outdoor air pollution, climatic changes and allergic bronchial asthma,” Eur. Respir. J., vol. 20, no. 3, pp. 763–776, 2002.
[22] A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NO_x sensors based on semiconducting metal oxide nanostructures: Progress and perspectives,” Sensors Actuators, B Chem., vol. 171–172, no. 2012, pp. 25–42, 2012.
[23] C. Bur, M. E. Andersson, A. L. Spetz, and A. Schütze, “Detecting volatile organic compounds in the ppb range with gas sensitive platinum gate SiC-field effect transistors,” IEEE Sens. J., vol. 14, no. 9, pp. 3221–3228, 2014.
[24] L. B. Kreuzer and C. K. N. Patel, “Nitric Oxide Air Pollution: Detection by Optoacoustic Spectroscopy,” Science., vol. 173, no. 3991, pp. 45–47, Jul. 1971.
[25] L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola, “Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO_2,” Sensors Actuators, B Chem., vol. 238, pp. 706–715, 2017.
[26] I. Heimann et al., “Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors,” Atmos. Environ., vol. 113, pp. 10–19, 2015.
[27] L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola, “Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide,” Sensors Actuators, B Chem., vol. 215, pp. 249–257, 2015.
[28] S. Gaglio, Advances in Intelligent Systems and Computing 260 Advances onto the Internet of Things. Springer, 2014.
[29] D. Hasenfratz et al., “Deriving high-resolution urban air pollution maps using mobile sensor nodes,” Pervasive Mob. Comput., vol. 16, no. PB, pp. 268–285, 2015.
[30] D. Westerdahl, S. Fruin, T. Sax, P. M. Fine, and C. Sioutas, “Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles,” Atmos. Environ., vol. 39, no. 20, pp. 3597–3610, 2005.
[31] B. Elen et al., “The Aeroflex: A bicycle for mobile air quality measurements,” Sensors (Switzerland), vol. 13, no. 1, pp. 221–240, 2013.
[32] N. Nikzad et al., “CitiSense,” in Proceedings of the conference on Wireless Health - WH ’12, 2012, no. 11, pp. 1–8.
[33] E. Matisová and M. Dömötörová, “Fast gas chromatography and its use in trace analysis,” J. Chromatogr. A, vol. 1000, no. 1–2, pp. 199–221, 2003.
[34] D. L. Poster, M. M. Schantz, L. C. Sander, and S. A. Wise, “Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods,” Anal. Bioanal. Chem., vol. 386, no. 4, pp. 859–881, 2006.
[35] N. H. Snow and G. C. Slack, “Head-space analysis in modern gas chromatography,” TrAC - Trends Anal. Chem., vol. 21, no. 9–10, pp. 608–617, 2002.
[36] D. Smith and P. Španěl, “Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis,” Mass Spectrom. Rev., vol. 24, no. 5, pp. 661–700, 2005.
[37] J. Beauchamp, F. Kirsch, and A. Buettner, “Real-time breath gas analysis for pharmacokinetics: Monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules,” J. Breath Res., vol. 4, no. 2, pp. 1–12, 2010.
[38] P. Španěl and D. Smith, “Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine,” Eur. J. Mass Spectrom., vol. 13, no. 1, pp. 77–82, 2007.
[39] O. A. Pogodina et al., “Combination of sorption tube sampling and thermal desorption with hollow waveguide FT-IR spectroscopy for atmospheric trace gas analysis: determination of atmospheric ethene at the lower ppb level,” Anal. Chem., vol. 76, no. 2, pp. 464–468, 2004.
[40] M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO_2, CH_4, N_2 O, and CO in air,” Anal. Chem., vol. 72, no. 1, pp. 206–215, 2000.
[41] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng., vol. 37, no. 2–3, pp. 101–114, 2002.
[42] P. Vesely, L. Lusk, G. Basarova, J. Seabrooks, and D. Ryder, “Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry,” J. Agric. Food Chem., vol. 51, no. 24, pp. 6941–6944, 2003.
[43] S. N. Sinha, V. K. Bhatnagar, P. Doctor, G. S. Toteja, N. P. Agnihotri, and R. L. Kalra, “A novel method for pesticide analysis in refined sugar samples using a gas chromatography-mass spectrometer (GC-MS/MS) and simple solvent extraction method,” Food Chem., vol. 126, no. 1, pp. 379–386, 2011.
[44] L. Pereira, M. Pujol, J. Garcia-Mas, and M. A. Phillips, “Non-invasive quantification of ethylene in attached fruit headspace at 1 p.p.b. by gas chromatography–mass spectrometry,” Plant J., vol. 91, no. 1, pp. 172–183, 2017.
[45] J. King et al., “Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study,” Physiol. Meas., vol. 31, no. 9, pp. 1169–1184, 2010.
[46] M. A. Rahman, P. Kumar, D. S. Park, and Y. B. Shim, “Electrochemical sensors based on organic conjugated polymers,” Sensors, vol. 8, no. 1, pp. 118–141, 2008.
[47] D. Wei and A. Ivaska, “Applications of ionic liquids in electrochemical sensors,” Anal. Chim. Acta, vol. 607, no. 2, pp. 126–135, 2008.
[48] J. Riegel, H. Neumann, and H. M. Wiedenmann, “Exhaust gas sensors for automotive emission control,” Solid State Ionics, vol. 152–153, pp. 783–800, 2002.
[49] E. Ivers-Tiffée, K. H. Härdtl, W. Menesklou, and J. Riegel, “Principles of solid state oxygen sensors for lean combustion gas control,” Electrochim. Acta, vol. 47, no. 5, pp. 807–814, 2001.
[50] J. Mikołajczyk et al., “Detection of gaseous compounds with different techniques,” Metrol. Meas. Syst., vol. 23, no. 2, pp. 205–224, 2016.
[51] K. Schmitt, A. Müller, J. Huber, S. Busch, and J. Wöllenstein, “Compact photoacoustic gas sensor based on broadband IR source,” Procedia Eng., vol. 25, pp. 1081–1084, 2011.
[52] P. Barritault et al., “Low power CO_2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source,” Sensors Actuators, B Chem., vol. 182, pp. 565–570, 2013.
[53] K. Wetchakun et al., “Sensors and Actuators B : Chemical Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sensors Actuators B. Chem., vol. 160, no. 1, pp. 580–591, 2011.
[54] G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, vol. 10, no. 6, pp. 5469–5502, 2010.
[55] K. Tsukada et al., “Dual-Gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys., vol. 49, no. 024206, pp. 1–5, 2010.
[56] M. Bastuck, C. Bur, A. Lloyd Spetz, M. Andersson, and A. Schütze, “Gas identification based on bias induced hysteresis of a gas-sensitive SiC field effect transistor,” J. Sensors Sens. Syst., vol. 3, no. 1, pp. 9–19, 2014.
[57] C. Schmädicke, “Silicon nanowire based sensor for highly sensitive and selective detection of ammonia,” Technische Universität Dresden, 2015.
[58] I. Union, O. F. Pure, and A. Chemistry, “Chemical sensors definitions and classification,” Pure Appl. Chem., vol. 67, no. 4, pp. 597–600, 1995.
[59] S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors, vol. 9, no. 10, pp. 8158–8196, 2009.
[60] J. Kukkola et al., “Gas sensors based on anodic tungsten oxide,” Sensors Actuators, B Chem., vol. 153, no. 2, pp. 293–300, 2011.
[61] C. N. Xu, N. Miura, Y. Ishida, K. Matsuda, and N. Yamazoe, “Selective detection of NH_3 over NO in combustion exhausts by using Au and MoO_3 3 doubly promoted WO_3 element,” Sensors Actuators, B Chem., vol. 65, no. 1, pp. 163–165, 2000.
[62] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Switzerland), vol. 12, no. 7, pp. 9635–9665, 2012.
[63] S. Pirsa, “Chemiresistive gas sensors based on conducting polymers,” Mater. Sci. Eng. Concepts, Methodol. Tools, Appl., vol. 1–3, pp. 543–574, 2017.
[64] E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta, vol. 568, no. 1–2, pp. 28–40, 2006.
[65] V. E. Bochenkov and G. B. Sergeev, Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures, vol. 3. American Scientific Publishers, 2010.
[66] B. P. J. De Lacy Costello, R. J. Ewen, P. R. H. Jones, N. M. Ratcliffe, and R. K. M. Wat, “Study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide,” Sensors Actuators, B Chem., vol. 61, no. 1, pp. 199–207, 1999.
[67] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 1–103, 2005.
[68] Z. L. Wang, “Zinc oxide nanostructures: Growth, properties and applications,” J. Phys. Condens. Matter, vol. 16, no. 25, pp. R829–R858, 2004.
[69] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, pp. 1–22, 2012.
[70] M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: Synthesis, use in high-sensitivity NO_2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C, vol. 115, no. 26, pp. 12763–12773, 2011.
[71] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, 2007.
[72] L. Spanhel, “Colloidal ZnO nanostructures and functional coatings: A survey,” J. Sol-Gel Sci. Technol., vol. 39, no. 1 SPEC. ISS., pp. 7–24, 2006.
[73] V. Strano et al., “Double role of HMTA in ZnO nanorods grown by chemical bath deposition,” J. Phys. Chem. C, vol. 118, no. 48, pp. 28189–28195, 2014.
[74] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution?,” J. Mater. Chem., vol. 14, no. 16, pp. 2575–2591, 2004.
[75] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures,” Thin Solid Films, vol. 515, no. 24 SPEC. ISS., pp. 8679–8683, 2007.
[76] S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater., vol. 10, no. 1, pp. 1–18, 2009.
[77] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine,” J. Sol-Gel Sci. Technol., vol. 39, no. 1 SPEC. ISS., pp. 49–56, 2006.
[78] E. Kanazawa et al., “Metal oxide semiconductor N_2 O sensor for medical use,” Sensors Actuators, B Chem., vol. 77, no. 1–2, pp. 72–77, 2001.
[79] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal oxide gas sensors: Sensitivity and influencing factors,” Sensors, vol. 10, no. 3, pp. 2088–2106, 2010.
[80] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, “On-chip fabrication of ZnO -nanowire gas sensor with high gas sensitivity,” Sensors Actuators, B Chem., vol. 138, no. 1, pp. 168–173, 2009.
[81] L. Liao et al., “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C, vol. 111, no. 5, pp. 1900–1903, 2007.
[82] D. R. Miller, S. A. Akbar, and P. A. Morris, “Nanoscale metal oxide-based heterojunctions for gas sensing: A review,” Sensors Actuators, B Chem., vol. 204, pp. 250–272, 2014.
[83] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensor for H_2, NO_2, and hydrocarbon sensing,” IEEE Sens. J., vol. 7, no. 6, pp. 919–924, 2007.
[84] A. Rothschild and Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys., vol. 95, no. 11 I, pp. 6374–6380, 2004.
[85] N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 63–75, 2003.
[86] D. Kohl, “Surface processes in the detection of reducing gases with SnO_2-based devices,” Sensors and Actuators, vol. 18, no. 1, pp. 71–113, 1989.
[87] X. Geng, C. Zhang, Y. Luo, and M. Debliquy, “Flexible NO_2 gas sensors based on sheet-like hierarchical ZnO_(1-x) coatings deposited on polypropylene papers by suspension flame spraying,” J. Taiwan Inst. Chem. Eng., vol. 75, no. 2, pp. 280–286, 2017.
[88] R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, “Zinc oxide nanostructures for NO_2 gas–sensor applications: A review,” Nano-Micro Lett., vol. 7, no. 2, pp. 97–120, 2015.
[89] M. W. Ahn et al., “Gas sensing properties of defect-controlled ZnO -nanowire gas sensor,” Appl. Phys. Lett., vol. 93, no. 26, pp. 1–4, 2008.
[90] X. Geng, C. Zhang, Y. Luo, H. Liao, and M. Debliquy, “Light assisted room-temperature NO_2 sensors with enhanced performance based on black SnO_(1-α)@ ZnO_(1-β)@ SnO_(2-γ) nanocomposite coatings deposited by solution precursor plasma spray,” Ceram. Int., vol. 43, no. 8, pp. 5990–5998, 2017.
[91] S. W. Fan, A. K. Srivastava, and V. P. Dravid, “UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO,” Appl. Phys. Lett., vol. 95, no. 14, pp. 1–4, 2009.
[92] C. C. Liu et al., “Selective real-time nitric oxide detection by functionalized zinc oxide,” J. Phys. D. Appl. Phys., vol. 42, no. 15, pp. 1–4, 2009.
[93] W. Wu et al., “Increasing UV photon response of ZnO sensor with nanowires array,” Sci. Adv. Mater., vol. 2, no. 3, pp. 402–406, 2010.
[94] C. Soci et al., “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, no. 4, pp. 1003–1009, 2007.
[95] J. Zhou et al., “Highly selective detection of NH_3 and H_2 S using the pristine CuO and mesoporous In_2 O_3 @ CuO multijunctions nanofibers at room temperature,” Sensors Actuators, B Chem., vol. 255, pp. 1819–1830, 2018.
[96] L. Y. Hong, H. W. Ke, C. E. Tsai, and H. N. Lin, “Low concentration NO gas sensing under ambient environment using Cu_2 O nanoparticle modified ZnO nanowires,” Mater. Lett., vol. 185, pp. 243–246, 2016.
[97] C. L. Zhu, Y. J. Chen, R. X. Wang, L. J. Wang, M. S. Cao, and X. L. Shi, “Synthesis and enhanced ethanol sensing properties of α- Fe_2 O_3/ ZnO heteronanostructures,” Sensors Actuators, B Chem., vol. 140, no. 1, pp. 185–189, 2009.
[98] J. H. Yu and G. M. Choi, “Electrical and CO gas sensing properties of ZnO - SnO_2 composites,” Sensors Actuators, B Chem., vol. B52, no. 3, pp. 251–256, 1998.
[99] D. H. Yoon, J. H. Yu, and G. M. Choi, “CO gas sensing properties of ZnO - CuO composite,” Sensors Actuators, B Chem., vol. 46, no. 1, pp. 15–23, 1998.
[100] S. Somacescu, A. Dinescu, A. Stanoiu, C. E. Simion, J. Maria, and C. Moreno, “Hydrothermal synthesis of ZnO – Eu_2 O_3 binary oxide with straight strips morphology and sensitivity to NO_2 gas,” Mater. Lett., vol. 89, pp. 219–222, 2012.
[101] H. Tian, H. Fan, G. Dong, L. Ma, and J. Ma, “NiO/ZnO p-n heterostructures and their gas sensing properties for reduced operating temperature,” RSC Adv., vol. 6, no. 110, pp. 109091–109098, 2016.
[102] P. Rai, Y. S. Kim, H. M. Song, M. K. Song, and Y. T. Yu, “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO_2 gases,” Sensors Actuators, B Chem., vol. 165, no. 1, pp. 133–142, 2012.
[103] C. M. Chang, M. H. Hon, and I. C. Leu, “Outstanding H_2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms,” ACS Appl. Mater. Interfaces, vol. 5, no. 1, pp. 135–143, 2013.
[104] D. V. Ponnuvelu et al., “Rapid synthesis and characterization of hybrid ZnO @ Au core-shell nanorods for high performance, low temperature NO_2 gas sensor applications,” Appl. Surf. Sci., vol. 355, no. 2, pp. 726–735, 2015.
[105] S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, “Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles,” Nanotechnology, vol. 19, no. 17, pp. 1–5, 2008.
[106] S. Deng et al., “Reduced graphene oxide conjugated Cu_2 O nanowire mesocrystals for high-performance NO_2 gas sensor,” J. Am. Chem. Soc., vol. 134, no. 10, pp. 4905–4917, 2012.
[107] Q. Kuang et al., “Enhancing the photon- and gas-sensing properties of a single SnO_2 nanowire based nanodevice by nanoparticle surface functionalization,” J. Phys. Chem. C, vol. 112, no. 30, pp. 11539–11544, 2008.
[108] Q. Xiang et al., “Au nanoparticle modified WO_3 nanorods with their enhanced properties for photocatalysis and gas sensing,” J. Phys. Chem. C, vol. 114, no. 5, pp. 2049–2055, 2010.
[109] O. . Safonova, G. Delabouglise, B. Chenevier, A. . Gaskov, and M. Labeau, “CO and NO_2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh,” Mater. Sci. Eng. C, vol. 21, no. 1–2, pp. 105–111, Sep. 2002.
[110] J. Mizsei, P. Sipilä, and V. Lantto, “Structural studies of sputtered noble metal catalysts on oxide surfaces,” Sensors Actuators, B Chem., vol. 47, no. 1–3, pp. 139–144, 1998.
[111] H. Xia et al., “Au -doped WO_3-based sensor for NO_2 detection at low operating temperature,” Sensors Actuators, B Chem., vol. 134, no. 1, pp. 133–139, 2008.
[112] Y. H. Chang, M. Y. Chiang, J. H. Chang, and H. N. Lin, “Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires,” Mater. Lett., vol. 138, pp. 85–88, 2015.
[113] C. Gardner Swain and E. C. Lupton, “Field and resonance components of substituent effects,” J. Am. Chem. Soc., vol. 90, no. 16, pp. 4328–4337, 1968.
[114] R. K. Joshi, Q. Hu, F. Alvi, N. Joshi, and A. Kumar, “Au Decorated Zinc Oxide Nanowires for CO Sensing,” J. Phys. Chem. C, vol. 113, no. 36, pp. 16199–16202, Sep. 2009.
[115] N. M. Shaalan, T. Yamazaki, and T. Kikuta, “NO_2 response enhancement and anomalous behavior of n-type SnO_2 nanowires functionalized by Pd nanodots,” Sensors Actuators, B Chem., vol. 166–167, no. 2, pp. 671–677, 2012.
[116] W. C. Lu, S. S. Kumar, Y. C. Chen, C. M. Hsu, and H. N. Lin, “Au/Cu_2 O/ZnO ternary nanocomposite for low concentration NO_2 gas sensing at room temperature,” Mater. Lett., vol. 256, no. 2, p. 126657, 2019.
[117] M. Gr, “Photoelectrochemical cells Michael,” Nature, vol. 414, no. November, pp. 338–344, 2001.
[118] W. M. Kwok et al., “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett., vol. 89, no. 18, pp. 2004–2007, 2006.
[119] D. Wang et al., “Effects of postgrowth annealing treatment on the photoluminescence of zinc oxide nanorods,” J. Appl. Phys., vol. 99, no. 113509, pp. 1–5, 2006.
[120] A. B. Djurišić et al., “Defect emissions in ZnO nanostructures,” Nanotechnology, vol. 18, no. 9, p. 095702, Mar. 2007.
[121] U. Pal and P. Santiago, “Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process,” J. Phys. Chem. B, vol. 109, no. 32, pp. 15317–15321, 2005.
[122] M. H. Mamat et al., “Effects of annealing environments on the solution-grown, aligned aluminium-doped zinc oxide nanorod-array-based ultraviolet photoconductive sensor,” J. Nanomater., vol. 2012, no. Cvd, pp. 1–15, 2012.
[123] M. Jiao et al., “Influence of annealing temperature on the performance and stability of on-chip hydrothermally grown ZnO nanorod gas sensor toward NO_2,” Acad. J. Sci. Res., vol. 6, no. May, pp. 180–189, 2018.
[124] A. C. S. Sabioni, M. J. F. Ramos, and W. B. Ferraz, “Oxygen diffusion in pure and doped ZnO,” Mater. Res., vol. 6, no. 2, pp. 173–178, 2003.
[125] A. Khayatian, M. A. Kashi, R. Azimirad, S. Safa, and S. F. A. Akhtarian, “Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors,” Optik (Stuttg)., vol. 127, no. 11, pp. 4675–4681, 2016.
[126] M. C. Jun and J. H. Koh, “Effects of annealing temperature on properties of al-doped zno thin films prepared by sol-gel dip-coating,” J. Electr. Eng. Technol., vol. 8, no. 1, pp. 163–167, 2013.
[127] S. Kumar and P. D. Sahare, “Effects of annealing on the surface defects of zinc oxide nanoparticles,” Nano, vol. 7, no. 3, pp. 1–9, 2012.
[128] L. Sinatra et al., “A Au/Cu_2 O-TiO_2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?,” J. Catal., vol. 322, pp. 109–117, 2015.
[129] W. He, H. K. Kim, W. G. Wamer, D. Melka, J. H. Callahan, and J. J. Yin, “Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity,” J. Am. Chem. Soc., vol. 136, no. 2, pp. 750–757, 2014.
[130] P. Weide, K. Schulz, S. Kaluza, M. Rohe, R. Beranek, and M. Muhler, “Controlling the photocorrosion of zinc sulfide nanoparticles in water by doping with chloride and cobalt ions,” Langmuir, vol. 32, no. 48, pp. 12641–12649, 2016.
[131] C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, and Y. H. Ng, “Photocorrosion processes photocorrosion of cuprous oxide in hydrogen production : rationalising self-oxidation or self-reduction,” Angew. Chemie, vol. 57, no. 41, pp. 13613–13617, 2018.
[132] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interactions of tin oxide surface with O_2, H_2 O and H_2,” Surf. Sci., vol. 86, no. C, pp. 335–344, 1979.