研究生: |
李道政 Lee, Cheng-Tau |
---|---|
論文名稱: |
限制座標點之蛋白質催化區結構排比及其應用 Position-Constrained Active Site Structure Alignment and IT's Application |
指導教授: |
唐傳義
Tang, Chuan-Yi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 結構排比 、催化區排比 、催化殘基 、糖類水解酵素 |
外文關鍵詞: | structure alignment, active site alignment, catalytic residues, glycoside hydrolysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖類水解酵素之催化區含有兩個已知的重要催化殘基。我們假設這兩個重要催化殘基在結構排比中應該要被重疊在一起,並且希望觀察到相同功能分類下的糖類水解酵素,他們在催化殘基周圍有甚麼化學性質與幾何結構上的共同特徵。
蛋白質結構排比技術可以比較分析蛋白質結構間的同異處,並顯示蛋白質的共同特徵或獨特特徵。但是通過傳統的結構排比技術,催化殘基並不一定可以重疊在一起,所以我們設計一個座標點限制的結構排比,先將催化殘基的空間位置重疊,再進行剩餘殘基的排比。
最後,以EC3.2.1.4為實驗材料,其中包含反轉型和保留型兩種催化機制,多種折疊結構與SCOP結構區塊分類,觀察他們在不同階層分類下,分別有哪些殘基可以當作共同特徵。
For glycoside hydrolysis families, there are two known catalytic residues in the active site are important to the catalytic function. We assume the two catalytic residues should be superimposed together after alignment and we want to observe the chemical properties and geometric features around the two catalytic residues in same functional group.
Protein structure alignment can superimpose and comparison of variance components, the common or specific features of protein could be identified. But traditional structure alignment may not superimpose the catalytic residues in same coordinates, so we design a position constraint structure alignment that superimpose the catalytic residues first and align the remaining residues.
We select the 42 proteins in EC3.2.1.4 as experimental material. EC3.2.1.4 includes two mechanisms, inverting and retaining, 5 catalytic domain folds, many SCOP domains and glycoside hydrolysis families. Final, observe what residues can be the common features in the hierarchical classification.
[1] U. Hobohm and C. Sander, “A sequence property approach to searching protein databases”, J. Mol. Biol, 251, 390-399, 1995.
[2] W. R. Pearson, “Effective protein sequence comparison”, Methods Enzymol, 266,277-258,1996
[3] C. Branden, J. Tooze, ” Introduction to Protein structure”, Garland Publishing Inc, 1991
[4] R.powers, J. Copeland, K. Germer, K. A. Mercier, V. Ramanathan and P. Revesz, “Comparison of Protein Active- Site Structures for Functional Annotation of Proteins and Drug Design.” PROTEINS: Struct. Func. Bioinformatics, 65(1) 124-135, 2006
[5] Vincent Le Guilloux, Peter Schmidtke and Pierre Tuffery, "Fpocket: An open source platform for ligand pocket detection", BMC Bioinformatics, 10:168, 2009
[6] J. Munkres, "Algorithms for the Assignment and Transportation Problems", Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957
[7] Sean R. Eddy, “Where did the BLOSUM62 alignment score matrix come from?”, Nature Biotechnology 22 (8): 1035. doi:10.1038/nbt0804-1035. PMID 15286655, 2004
[8] BL Cantarel, PM Coutinho, C Rancurel, T Bernard, V Lombard, B Henrissat, “The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics”, Nucleic Acids Res 37:D233-238 [PMID: 18838391], 2009
[9] A. G. Murzin., S. E. Brenner, T. Hubbard, C Chothia, “SCOP: a structural classification of proteins database for the investigation of sequences and structures”, J. Mol. Biol, 247, 536-540, 1995
[10] Webb, Edwin C, “Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes”, San Diego: Published for the International Union of Biochemistry and Molecular Biology by Academic Press. ISBN 0-12-227164-5, 1992
[11] Konc,J. and Janezic,D. “ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment” Bioinformatics, 26, 1160-1168, 2010