簡易檢索 / 詳目顯示

研究生: 周彥良
Chou, Yen-Liang
論文名稱: 應用於再生能源系統之具零電壓切換隔離型高升壓比直流轉換器
A ZVS Isolated High Step-Up DC/DC Converter for Renewable Energy Systems
指導教授: 黃錫瑜
Huang, i-Yu
潘晴財
Pan, Ching-Tsai
口試委員: 林昇甫
Lin, Sheng-Fuu
鄒應嶼
Tzou, Ying-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 再生能源系統高升壓比零電壓切換交錯式切換
外文關鍵詞: Renewable Energy Systems, High Step-Up Converter, ZVS, Interleaved Control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來大量使用石化燃料造成自然環境破壞與溫室效應,世界各國開始提倡以再生能源取代石化燃料,在各種再生能源系統中,太陽光伏系統因為不需額外的機械部分,所以較吸引人們研究其相關技術。但此類系統皆為低電壓直流電源,應用上必須依靠高升壓比直流轉換器將其轉換為適合的電壓準位,以滿足後級反流器提供交流輸出或併聯市電,故本文即針對此需求提出一新型高升壓比直流轉換器,以作為此類能源應用之介面。
    本論文主要貢獻茲分述如下。本文提出一新型具零電壓切換隔離型高升壓比直流轉換器,此轉換器具有高升壓比、零電壓切換、可模組化、漏感能量回收與開關責任週期可全範圍自由調整而具有寬廣的電壓調整範圍等特點。並利用交錯式切換的方式減少輸入電流連波。最後則依據理論分析的結果,並輔以電路模擬軟體,實際製作一輸入電壓 至 、輸出電壓 以及額定輸出功率 之雛型系統以驗證新型轉換器的可行性。經由實測結果顯示本論文所研製之新型轉換器其主動開關均具有零電壓切換之特性,可減少開關電氣應力及降低損失,其電源轉換效率於 輸入電壓時,輸出為 至 的負載情況下均達93.8%以上效率,而在 負載時可達到最高效率95.7%,實測結果確實可驗證本新型轉換器之可行性與優越性。


    In recent years, due to the environment impact and shortage of fossil fuels, many countries around the world begin to promote using renewable energy rather actively. Among various renewable energy systems, photovoltaic (PV) systems which do not having any moving mechanic parts are perhaps most attractive. However, the output voltage of a PV module is rather low. For practical application, a high step-up dc converter is normally required for boosting to a higher voltage level for the following cascaded inverter. Hence, a novel high step-up isolated DC/DC converter as an interface for these PV energy systems is proposed in this thesis.
    The major contributions of this thesis may be summarized as follows. A novel isolated high step-up DC/DC converter is first proposed for achieving much higher voltage gain as an interface. The special feature of this new converter lies in its zero voltage switching (ZVS) characteristic for reducing greatly the electric stress of the switches and the switching loss as well as the interleaved control to reduce the input current ripple. Also, it can be modularized and the duty ratio of the active switch can be operated in full range. Furthermore, a 200W rating prototype with 20V to 35V input and 400V output is constructed for verifying the feasibility of the prototype. The experimental results show that the resulting efficiency can be maintained above 93.8% as the load is varied from 40W to 200W, and the highest efficiency of 95.7% is achieved at 80W.

    摘 要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本論文貢獻 2 1.4 本論文內容概述 3 第二章 隔離型升壓轉換器簡介 4 2.1 前言 4 2.2 雙電感電流饋入式升壓轉換器 4 2.3 雙電感電流饋入式倍壓轉換器 8 2.4 柔性切換電流饋入式倍壓轉換器 12 第三章 本文所提新型轉換器之工作原理與特性分析 19 3.1 前言 19 3.2 新型轉換器電路架構與工作原理 19 3.3 新型轉換器穩態特性分析 29 第四章 硬體雛型電路製作與實測結果 38 4.1 前言 38 4.2 功率電路製作 38 4.3 控制電路製作 43 4.4 模擬與實測結果 45 第五章 結論 66 參考文獻 68

    [1] T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, Vol. 35, No. 11, pp.35-40, 1998.
    [2] S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, Vol. 89, No. 8, pp. 1216-1226, Aug. 2001.
    [3] G. Connor and H. W. Whittington, “A vision of true costing [renewable energy],” Engineering Science and Education Journal, Vol. 10, No. 1, pp. 4-12, Feb. 2001.
    [4] M. Begovic, A. Pregelj, A. Rohatgi and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, Vol. 89, No. 12, pp. 1734-1743, Dec. 2001.
    [5] M. Ellis, M. Von Spakovsky and D. Nelson, “Fuel cell systems: efficient, flexible energy conversion for 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, Dec. 2001.
    [6] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 486-494, Apr. 2006.
    [7] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. on Power Electronics, vol. 20, No. 4, pp. 847-856, Jul. 2005.
    [8] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. on Power Electronics, vol. 23, No. 3, pp. 1320 - 1333, May. 2008.
    [9] R. J. Wai, W. H. Wang and C. Y Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. on Industrial Electronics, vol. 55, No. 1, pp. 240-250, Jan. 2008.
    [10] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, No. 3, pp. 953-964, Apr. 2008.
    [11] S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Industry Applications, vol. 41, No. 5, pp. 1292-1306, Sep./Oct. 2005.
    [12] R. J. Wai, C. Y. Lin, R. Y. Duan and Y. R. Chang, “High-efficiency DC-DC converter with high voltage gain and reduced switch stress,” IEEE Trans. on Industrial Electronics, vol. 54, No. 1, pp. 354 - 364 , Feb. 2007.
    [13] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Step-up dc-dc converter by coupled inductor and voltage-lift technique,” IET Power Electronics , Vol. 3, Iss. 3, pp. 369-378, 2010.
    [14] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 6, pp. 2007-2017, Jun. 2010.
    [15] S. V. Araujo, R. P. Torrico-Bascope and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 6, pp. 1987-1997, Jun. 2010.
    [16] W. Li, Y. Zhao, Y. Deng and X. He, “Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion,” IEEE Trans. on Industrial Electronics, Vol. 25, No. 9, pp. 2397-2408, Sep. 2010.
    [17] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen and I. Adrian. , “A single switch boost-flyback DC-DC converter integrated with switched-capacitor cell,” IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp.2782 – 2787, May. 2011.
    [18] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proceedings-Electric Power Applications, Vol. 152, No. 2, pp. 217-225, Mar. 2005.
    [19] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proceedings-Electric Power Applications, Vol. 151, No. 2, pp. 182-190, Mar. 2004.
    [20] O. Krykunov, “Analysis of the extended forward converter for fuel cell applications,” IEEE International Symposium on Industrial Electronics, pp. 661-666, 2007.
    [21] R. Gules, L. L. Pfitscher and L. C. Franco, “An interleaved boost DC-DC converter with large conversion ratio,” IEEE International Symposium on Industrial Electronics, pp. 411-416, 2003.
    [22] J. Wen, T. Jin and K. Smedley, “A new interleaved isolated boost converter for high power applications,” IEEE Applied Power Electronics Conference and Exposition, pp. 79–84, Mar. 2006.
    [23] W. Li and X. He, “ZVT interleaved boost converters for high-efficiency, high stepup dc-dc conversion,” IET Electric Power Applications, vol. 1, no. 2, pp. 284–290,Mar. 2007.
    [24] P. Thounthong, P. Sethakul, S. Rael and B. Davat, “Design and implementation of 2-phase interleaved boost converter for fuel cell power source,” IET Conference on Power Electronics, Machines and Drives, pp. 91–95, Apr.,2008.
    [25] 劉威志, “新型高升壓比交錯式直流轉換器之建模與設計,” 國立清華大學電機工程研究所碩士論文,民國九十八年。
    [26] Y. Jang and M. Jovanovic, “Interleaved boost converter with intrinsic voltagedoubler characteristic for universal-line PFC front end,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1394–1401, Jul. 2007.
    [27] S. K. Han, H. K. Yoon, G.W. Moon, M. J. Youn, Y. H. Kim and K. H. Lee, “A new active clamping zero-voltage switching PWM current-fed half-bridge converter,” IEEE Trans. on Power Electronics, vol. 20, no. 6, pp. 1271–1279, Nov. 2005.
    [28] Y. Jang and M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 169–175, Jan. 2004.
    [29] X. Kong and A. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” IEEE Trans. on Power Electronics, vol. 22, no. 2, pp. 543–550, Mar.2007.
    [30] S. J. Jang, C. Y. Won, B. K. Lee and J. Hur, “Fuel cell generation system with a new active clamping current-fed half-bridge converter,” IEEE Trans. on Energy Conversion, vol. 22, no. 2, pp. 332–340, Jun. 2007.
    [31] J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 826 - 834, Mar. 2009.
    [32] M. Delshad and H. Farzanehfard, “High step-up zero-voltage switching current-fed isolated pulse width modulation DC-DC converter,” IET Power Electronics, vol. 4, no. 3, pp. 316 - 322, Apr. 2011.
    [33] W. Li, J. Liu, J. Wu and X. He, “Design and analysis of isolated ZVT boost converters for high-efficiency and high-step-up Applications,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 2363 - 2374, Nov. 2007.
    [34] H. Kim, C. Yoon and S. Choi, “An improved current-fed ZVS isolated boost converter for fuel cell applications,” IEEE Trans. on Power Electronics, vol. 25, no. 9, pp. 2357 - 2364, Sep. 2010.
    [35] P.Wolfs, “A current-sourced dc-dc converter derived via the duality principle from the half-bridge converter,” IEEE Trans. on Industrial Electronics, vol. 40, no. 1, pp. 139–144, Feb. 1993.
    [36] Y. Jang and M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 169–175, Jan. 2004.
    [37] A. K. Rathore, A. K. S. Bhat and R. Oruganti, “ Analysis, design and experimental results of wide range ZVS active-clamped L-L Type current-fed DC/DC converter for fuel cells to utility interface,” IEEE Trans. on Industrial Electronics, vol. 59, no. 1, pp. 473 - 485, Jan. 2012.
    [38] N. Kasa, T. Iida and L. Chen, “ Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. on Industrial Electronics, vol. 52, no. 4, pp. 1145 - 1152, Aug. 2005.
    [39] Y. Choe, J. W. Ahn, J. G. Lee and S. H. Baek, “ Dynamic simulator for a PEM fuel cell system with a PWM DC/DC Converter,” IEEE Trans. on Energy Conversion, vol. 23, no. 2, pp. 669 - 680, Jun. 2008.
    [40] Y. Jang, M. M. Jovanovic and D. L. Dillman, “ Hold-up time extension Circuit with integrated magnetics,” IEEE Trans. on Power Electronics, vol. 21, no. 2, pp. 394 - 400, Mar. 2006.
    [41] “2.0 amp output current IGBT fate drive optocoupler,” Aglient Technologies.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE