簡易檢索 / 詳目顯示

研究生: 廖維崙
Wei-Lun Liao
論文名稱: 以小角度中子散射研究Polyfluorene電致發光高分子於溶液之聚集行為
Aggregation Behavior of Electroluminescent Polyfluorene in Solution States Probed by SANS
指導教授: 陳信龍
Hsin-Lung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 71
中文關鍵詞: 電致發光高分子散射聚集體
外文關鍵詞: Polyfluorene, scattering, SANS, aggregate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用小角度中子散射研究發藍光的導電高分子poly(9,9-dioctylfluorene)(PFO)在甲苯溶液中的聚集行為。研究結果發現,於SANS散射圖譜高解析度區域中,rod-like特性為高分子鏈中的某一區段,而非高分子因缺陷折疊而成的defect cylinder。且隨著高分子濃度的增加,其middle-q(0.006 Å –1≦q≦0.1 Å –1)區域的散射強度對遞減,主要是由於網目高分子鏈形成一網目結構所致,散射區域q≦0.006 Å–1,可以發現散射強度有明顯的增強,主要是由於高分子間有聚集體產生所造成的貢獻。此外SANS圖譜可由two correlation model + rod form factor來適當的描述其曲線。由correlation length與濃度的關係式(ξd~ c-0.5)得知大部分高分子是均勻的分散於甲苯溶劑之中。PFO溶液置於低溫環境下會有凝膠化現象產生,且由POM與DSC此凝膠化現象為一結晶程序且屬於一熱可逆程序。且由升降溫小角度中子散射圖譜可以得知,當溫度重高溫降回室溫時,溶液中可快速的形成新的聚集體,表示此聚集體的形成為一自發的形式。


    We use small angle neutron scattering (SANS) to study the aggregation of an electroluminescent polymer, poly(9,9-dioctylfluorene)(PFO), in toluene solution. The scattering profile display the asymptotic behavior of q-1, associated with the rod-like character of the PFO chain on local scale (q-1 > lps = persistence length). The low-q intensity shows strong upturn, signifying prevalent inter-chain aggregation of the polymer. The middle-q intensity decreases with increasing the polymer concentration caused by the chain mashng. And PF chains were mostly uniformly dissolved in toluene. The chains were virtually rod-like, such that the corresponding mesh size in the semidilute regime exhibited c-1/2 dependence. A small fraction of the rod segments aggregated to form nanoscale microdomain, which was responsible for the intensity upturn at low-q. The aggregation was spontaneous, as demonstrated from the thermal reversibility experiment.

    目 錄 中文摘要 I 英文摘要 II 目錄 .III 圖目錄 V 表目錄 VIII 第一章 緒論與文獻回顧 .1 1.1前 言 1 1.2共軛導電高分子之電子狀態 3 1.3偏極子(polaron)與雙偏極子(bipolaron) 6 1.4螢光(Fluorescence)與磷光(Phosphorescence) 9 1.5光激發(Photoluminescence)與電激發(Electroluminescence) 12 1.6共軛高分子間的交互作用 15 1.6.1分子間交互作用的種類 15 1.6.2能量轉移 18 1.7高分子有機發光二極體的發展 20 1.8 Polyfluorene簡介 24 1.9研究目的與動機 33 第二章 實驗部分 35 2.1實驗藥品 35 2.2樣品製備 36 2.3儀器設備 36 第三章 結果與討論 38 3.1以SANS探討PFO之聚集行為與分子構形 39 3.2以SANS探討末端基對PFO聚集行為之影響 50 3.3 Aging效應對polyfluorene甲苯溶液聚集之影響 55 第四章 結論 67 參考文獻 69

    參考文獻
    [1] Atkins, P. W.; The Elements of Physical Chemistry, Oxford University Press, 1996.
    [2] C. Kittel,; Introduction to Solid State Physics, 6th edition, John Wiley & Son, Singapore, 1989
    [3] Chien, J.C.W.; Polyacetylene : Chemistry, Physics, and Material Science, Academic Press, Orlando, 1984.
    [4] Krivoshei, I. V., Skorobogatov, V. M.; Polyacetylene and Polyarylenes: Synthesis and Conductive properties, Gordon and Breach Science Publishers, 1991.
    [5] The Royal Swedish Academy of Sciences, The Nobel Prize in Chemistry, 2000: Conductive polymer, 2000
    [6] D. A. Ckoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry, 5th edition, Saunders College Publishing, 1988
    [7] Joseph R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic / Plenum Publishers, New York, 1999.
    [8] Hadziioannou. G, Paul F. van Hutten (Eds.), Semiconducting polymers: Chemistry, Physics and Engineering, WILEY-VCH, 2000.
    [9] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck. Nature, 397, 121, 1999.
    [10] A.R. Inigo, C. H. Tan, W.S. Fann, Y.S. Huang, G.Y. Perng and S.A. Chen., Adv. Mater., 13, 504, 2001.
    [11] C. H. Tan, A.R. Inigo, W.S. Fann, P.K. Wei, Y.S. Huang, G.Y. Perng and S.A. Chen, Organic Electronics, 3, 81, 2002.
    [12] Jean Roncali, Chem. Rev., 97, 173, 1997.
    [13] J. A. Osaheni, S. A. Jenekhe, Macromolecules, 27, 739, 1994.
    [14] Inmaculada Prieto, Julie Teetsov, Marye Annw Fox, David A. Vanden Bout, Allen J. Bard, J. Phys. Chem. A, 105, 520, 2001.
    [15] K.-Y. Peng, S.-A. Chen, W.-S. Fann, J. Am. Chem. Soc., 123, 11388, 2001.
    [16] N. J. Truuo, Modern Molecular Photochemistry, Sausalito, California, University Science Books, 1991.
    [17] A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 50, 64, 1953.
    [18] A. Bernanose, J. Chim. Phys., 52, 396, 1955.
    [19] E. Gurnee, R. Fernandez, US Patent 3 172 862, 1965.
    [20] M. Pope, H. Kallman, P. Magnante, J. Chem. Phys., 38, 2024, 1963.
    [21] C. Tang, S. VanSlyke, Appl. Phys. Lett., 51, 913, 1987.
    [22] J. Burroughes, D. Bradlt, A. Brown, R. Marks., K. Mackay, R. Friand, P. Burn, A. Holmes, Nature, 347, 539, 1990.
    [23] R. Wessling, J. Polym. Sci. Polym. Symp., 72, 55, 1985.
    [24] D. Braun, A. Heeger, Appl. Phys. Lett., 58, 1982, 1991.
    [25] M.Fukuda, K. Sawada, K. Yoshino, Jpn. J. Appl. Phys., 28, L1433, 1989.
    [26] Y. Ohmori, K. Yoshino, M. Uchida, Jpn. J. Appl. Phys., 30, L1941, 1991.
    [27] Q. Pei, Y. Yang, T. Am. Chem. Soc., 118, 7416, 1996.
    [28] D. Neher, Macromol. Rapid Commun., 22, 17, 2001.
    [29] M.Fukuda, K. Sawada, K. Yoshino, J. Polym. Sci. Part A: Polym. Chem., 31, 2465, 1993.
    [30] U. Scherf, E. J. W. List, Adv. Mater., 14, 477, 2002.
    [31] M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, M. Soliman, Acta Polym., 49, 439, 1998.
    [32] P. Blondin, J. Bouchard, S. Beaupre, M. Belletête, G. Durocher, M. Leclerc, Macromolecules, 33, 5874, 2000.
    [33] G. Klaerner, R. D. Miller, Macromolecules, 31, 2007, 1998.
    [34] J. -I. Lee, G. Klaerner, R. D. Miller, Chem. Mater., 11, 1083, 1999.
    [35] G. Klärner, J. -I. Lee, V. Y. Lee, E. Chan, T. -P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scoot, R. D. Miller, Chem. Mater., 11, 1800, 1999
    [36] J. -I. Lee, D. -H. Hwang, H. Park, L. -M. Do, H. Y. Chu, T. Zyung, R. D. Miller, Synthetic Metals, 111, 195, 2000
    [37] T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller, K. Meerholz, A. Yasuda, D. Neher, Adv. Mater., 13, 565, 2001.
    [38] X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, S. S. Xiao, Adv. Funct. Mater., 13, 325, 2003.
    [39] L. Romaner, A. Pogantsch, P. S. Freitas, U. Scherf, M. Gaal, Q. Zojer, E. J. W. List, Adv. Funct. Mater., 13, 597, 2003.
    [40] M. Gaal, E. J. W. List, U. Scherf, Macromolecules, 36, 4136, 2003.
    [41] H. -O. Tang, M. Fujiki, M. Motonaga, Polymer, 43, 6213, 2002.
    [42] H. -O. Tang, M. Fujiki, T. Sato, Macromolecules, 35, 6439, 2002.
    [43] C. Xia, R. C. Advincula, Macromolecules, 34, 5854, 2001.
    [44] W. -L. Yu, Y. Cao, J. Pei, W. Huang, A. J. Heeger, Appl. Phys. Lett., 75, 3270, 1999.
    [45] W. -L. Yu, J. Pei, W. Huang, A. J. Heeger, Adv. Mater., 12, 828, 2000.
    [46] A. Pogantsch, F. P. Wenzl, E. J. W. List, G. Leising, A. C. Grimsdale, K. Mullen, Adv. Mater., 14, 1061, 2002.
    [47] J. S. Higgings, H. C. Benoit, Polymer and Neutron Scattering, Oxgord, New Tork, 1994.
    [48] D. Hu et al., Nature, 405, 1030, 2000.
    [49] J. P. Aime et al., Phys. Rev. Lett., 62, 55, 1989.
    [50] G. Strobl, The Physics of Polymer, Springer-Verlag, Berlin, 1996

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE