簡易檢索 / 詳目顯示

研究生: 薛雅文
Hsueh, Ya Wen
論文名稱: 篩選果蠅胚胎發育中影響 amnioserosa 細胞收縮的肌動蛋白調控因子
Screening for the Actin Regulators Involved in Amnioserosa Constriction during Drosophila Embryogenesis
指導教授: 徐瑞洲
Hsu, Jui Chou
口試委員: 桑自剛
Sang, Tzu Kang
汪宏達
Wang, Horng Dar
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 36
中文關鍵詞: 肌動蛋白調控因子amnioserosa 細胞收縮胚胎發育黏著分子
外文關鍵詞: actin regulator, amnioserosa constriction, embryogenesis, Echinoid
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在果蠅的胚胎發育中,背部閉合 (dorsal closure) 主要藉由肌動凝蛋白 (actomyosin) 在不同細胞提供的兩種力來完成,一種是在最靠近背部的表皮細胞 (epidermal cells) 的先端 (leading edge) 形成 purse-string 提供縫合的拉力;另一 種是在 amnioserosa (AS) 細胞的周遭和中心提供縮小細胞的力量,又稱做 AS constriction。而細胞骨架 (cytoskeleton) 也在改變細胞的形狀上扮演很重要的角 色。 Echinoid (Ed) 是一個細胞黏著分子 (adhesion molecule) ,在正常情況下 AS 細胞的 Ed 在 stage 13 會被完全清掉,但先前有研究發現在同一個發育階段大 量表現 Ed 會造成細胞縮小,目前對肌動凝蛋白如何影響 AS 細胞的收縮仍不 清楚,而我們也發現在同一個發育階段表現不會被降解的 Ed (non-degrable Ed) 除了會造成細胞縮小外也會使 actin 大量累積,因此我們想藉由基因篩選 (genetic screen) 的方式來找出參與調控 AS 細胞收縮的肌動蛋白的調控因子 (actin regulator) ,在這個研究中,我們發現大部分在實驗中使用的調控因子都參 與了 Ed 調控的 AS 收縮 (Ed-mediated AS constriction) ,而較少的調控因子參 與了正常的 AS 收縮 (normal AS constriction) ,此外,我們也發現肌動蛋白 (actin) 和 微管 (microtubule) 參與了 Ed 調控或是正常狀況下的 AS 收縮現象。 根據這些結果,我們找出了在 Ed 調控或是正常狀況下調控 AS 收縮的肌動蛋 白調控因子,並推測會藉由影響細胞骨架去調控 AS 細胞收縮。


    Dorsal closure is the last major process in Drosophila embryogenesis that mediated by two main forces, which provided by actomyosin in different cells. Actomyosin forms purse-string at leading edge of dorsal-most epidermal (DME) cells, which provide force for zippering, and the circumferential and cortical actomyosin coordinately reduce apical area by amnioserosa (AS) constriction. The cytoskeleton also participates in the cell remodeling process. Echinoid (Ed) is an adhesion molecule, which normally is completely removed at stage 13 in amnioserosa and causes premature AS constriction when ectopically expressed at same stage. However, how actomyosin regulates AS constriction remains unknown. In this study, we found that ectopically express non-degrable Ed cause premature AS constriction and extensively accumulation of actin. Therefore, we used genetic screen to investigate which actin regulator participates in AS constriction process. The results demonstrated that most of actin regulators, which we used in this study, participated in the Ed-mediated AS constriction but fewer involved in the normal AS constriction. We also found that actin and microtubule might participate in Ed-mediated or normal AS constriction event. Together, my thesis identified the specific actin regulators mediating AS constriction by affecting cytoskeleton in Ed-mediated or normal status.

    中文摘要 Abstract 致謝 Introduction 2 Materials and Methods 6 Results 9 Discussion 17 Figures 20 Table 31 References 32

    Applewhite, D.A., Grode, K.D., Duncan, M.C. and Rogers, S.L. (2013). The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell. 24:2885-93.

    Applewhite, D.A., Grode, K.D., Keller, D., Zadeh, A.D., Slep, K.C. and Rogers, S.L. (2010). The spectraplakin Short stop is an actin-microtubule cross-linker that contributes to organization of the microtubule network. Mol Biol Cell. 21:1714-24.

    Bai, J.-M., Chiu, W.-H., Wang, J.-C., Tzeng, T.-H., Perrimon, N., and Hsu, J.-C. (2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development 128, 591-601.

    Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. and Plastino, J. (2014). Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 94:235-63.

    Booth, A.J., Blanchard, G.B., Adams, R.J. and Röper, K. (2014). A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev Cell. 29:562-76.

    Bretscher, A., Edwards, K. and Fehon, R. G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell. Biol. 3, 586-599.

    dos Remedios, C.G., Chhabra, D., Kekic, M., Dedova, I.V., Tsubakihara, M., Berry, D.A., and Nosworthy, N.J. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83, 433-473.

    Fehon, R.G., McClatchey, A.I. and Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. 11:276-87.

    Fletcher, D.A., Mullins, D., (2010). Cell mechanics and the cytoskeleton. Nature 463, 485–492.

    Franke, J.D., Montague, R.A., Kiehart, D.P., 2005. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal
    closure. Curr. Biol. 15, 2208–2221.

    Gefen, A. and Weihs, D. (2016). Mechanical cytoprotection: A review of cytoskeleton-protection approaches for cells. J Biomech. 24;49:1321-9.

    Harden, N. (2002). Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70, 181- 203.

    Heisenberg, C.P. and Bellaïche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell. 153(5):948-62.

    Howe, A.K. (2004). Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta. 5;1692(2-3)

    Ho, Y.H., Lien, M.T., Lin, C.M., Wei, S.Y., Chang, L.H., and Hsu, J.C. (2010). Echinoid regulates Flamingo endocytosis to control ommatidial rotation in the Drosophila eye. Development 137, 745-754.

    Hutson MS, Tokutake Y, Chang M-S, Bloor JW, Venakides S, et al. (2003). Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science. pp 145–149.

    Jacinto, A., Woolner, S., and Martin, P. (2002). Dynamic Analysis of Dorsal Closure in Drosophila: From Genetics to Cell Biology. Developmental cell 3, 9-19

    Jasper, H., Benes, V., Schwager, C., Sauer, S., Clauder-Münster, S., Ansorge, W. and Bohmann, D. (2001). The genomic response of the Drosophila embryo to JNK signaling. Dev Cell. 1:579-86

    Jackson, S.M. and Berg, C.A. (2002). An A-kinase anchoring protein is required for protein kinase A regulatory subunit localization and morphology of actin structures during oogenesis in Drosophila. Development 129:4423–4433

    Karlik, C.C. and FyrbergTwo, E.A. (1986). Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol Cell Biol. 6: 1965–1973.

    Kasza, K.E. and Zallen, J.A. (2011). Dynamics and regulation of contractile actin-myosin networks in morphogenesis. Curr Opin Cell Biol. 23:30-8.

    Kiehart, D.P. (1999). Wound healing: the power of the purse string. Curr. Biol. 9:R602–R605.

    Kiehart, D.P., Galbraith, C.G., Edwards, K.A., Rickoll, W.L. and Montague, R.A. (2000). Multiple forces contribute to cell sheet morphogenesis for dorsal closure in
    Drosophila. J Cell Biol 149:471–490.

    Lecuit, T., Lenne, P.F. and Munro, E. (2011). Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol. 27:157-84.

    Li, Z., Rossi, E.A., Hoheisel, J.D., Kalderon, D. and Rubin, C.S. (1999). Generation of a novel A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog from a single gene. J Biol Chem. 274:27191-200.

    Lin, H.P., Chen, H.M., Wei, S.Y., Chen, L.Y., Chang, L.H., Sun, Y.J., Huang, S.Y., and Hsu, J.C. (2007). Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Developmental biology 311, 423-433.

    Mangeat, P., Roy, C. and Martin, M. (1999). ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187-192.

    Martin, A.C. and Goldstein, B. (2014). Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development. 141:1987-98

    Martin, A.C., Kaschube, M. and Wieschaus, E.F. (2009). Pulsed contractions of an actin–myosin network drive apical constriction. Nature. 457(7228):495-9.

    Mason, F.M., Tworoger, M., and Martin, A.C. (2013). Apical domain polarization localizes actin–myosin activity to drive ratchet-like apical constriction. Nat Cell Biol. 15:926-36.

    Muller, H.-A.J., and Wieschaus, E. (1996). armadillo, bazooka, and stardust Are Critical for Early Stages in Formation of the zonula adherens and Maintenance of the Polarized Blastoderm Epithelium in Drosophila. The Journal of cell biology 134, 149- 163.

    Nogales, E. (2000) Structural insights into microtubule function. Annu Rev Biochem. 69:277-302.

    Pope, K.L. and Harris, T.J. (2008). Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in Drosophila. Development 135:2227-38.

    Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M. (2003). Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 5, 599–609.

    Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M. and Waterman-Storer, C.M. (2003). Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol. 5:599-609.

    Rugendorff, A., Younossi-Hartenstein, A. and Hartenstein, V. (1994). Embryonic origin and differentiation of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280.

    Ro ̈per, K. and Brown, N. H. (2003). Maintaining epithelial integrity: a func- tion for gigantic spectraplakin isoforms in adherens junctions. J. Cell Biol. 162, 1305–1315

    Takeichi, M. (2014). Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol. 15:397-410.

    Tsukita, S. and Yonemura, S. (1999). Cortical actin organization: lessons from ERM (Ezrin/Radixin/Moesin) proteins. J. Biol. Chem. 274, 34507- 34510.

    Wei, S.Y., Escudero, L.M., Yu, F., Chang, L.H., Chen, L.Y., Ho, Y.H., Lin, C.M., Chou, C.S., Chia, W., Modolell, J., et al. (2005). Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Developmental cell 8, 493-504.

    Yarmola, E.G., Edison, A.S., Lenox, R.H. and Bubb, M.R. (2001). Actin filament cross-linking by MARCKS: characterization of two actin-binding sites within the phosphorylation site domain. J Biol Chem. 276:22351-8

    Young, P.E., Richman, A.M., Ketchum, A.S., Kiehart, D.P., (1993). Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7, 29–41.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE