簡易檢索 / 詳目顯示

研究生: 林彥豪
Lin, Yen-Hou
論文名稱: Length Dependence of Backward THz-wave Generation by Nonlinear Frequency Mixing
利用非線性光混頻方式產生背向兆赫波
指導教授: 黃衍介
Huang, Yen-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 47
中文關鍵詞: 兆赫波差頻光參數產生器光參數放大器
外文關鍵詞: THZ, DFG, OPG, OPA, PPLN
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Terahertz (THz) radiation is defined in the 0.1–10 THz range of the electromagnetic spectrum. It corresponds to the 30–3000μm range of the wavelength spectrum, which is an important region between the optical wave and the microwave. THz radiation finds many applications in biomedicine, cancer inspection, inspection systems in airports, and molecular science. The THz wave can be generated through optical rectification, free electron laser, and nonlinear frequency mixing in nonlinear crystals.
    In this thesis, our experiment uses the nonlinear difference frequency generation (DFG) process in periodically poled LiNbO3 (PPLN) to generate the THz wave. The useful crystal length in the DFG process is believed to be limited by the absorptive length in the strongly absorptive materials. In this thesis, we use different lengths of PPLN with the same period to generate THz wave. Results show that the use of crystal length is not limited by absorptive length.

    However, in long lengths, the THz wave diffracts fast in the crystal and has weak interaction with the pump and signal wave, which decreases the power of the THz wave. In our previous work, we have demonstrated that there is two times the conversion efficiency in the non-collinearly phase-matched THz generator. In the experiment, we use a thin crystal called one-dimensional (1D) waveguide and a rectangular crystal called two-dimensional (2D) waveguide to enhance the power of the THz wave. The result shows that the power of the THz wave in the two-dimensional waveguide is about 1.82 times than that in the 1D waveguide.


    Table of Contents Abstract……………………………………………………… Ⅱ Abstract in Chinese ……………………………………….Ⅲ Acknowledgment……………………………………………...Ⅳ Table of contents ………………………………………...Ⅴ List of figures…………………………………………....Ⅵ Chapter 1:Introduction..............................1 1-1: Motivation……………………………………………….1 1-2: Overview of the thesis……………………………...4 Chapter2: Theory and Analysis…………….……………..5 2-1: The basic concept of Optical Parametric Generation (OPG)...............................................5 2-2: Coupled equations for Optical Parametric Generation……......................................8 2-3: Difference Frequency Generation with quasi-phase-matched (QPM) technology ….........................12 2-4: Backward Difference-frequency THz-wave Generation in one-dimension waveguide ………………………………....15 2-5: Enhanced Backward THz-wave Generation in two-dimension waveguide …………………………………………………....19 Chapter3: Experiments and Result ……………………...22 3-1: Experimental setup of the Backward THz-wave Difference-frequency Generators …………………………...........22 3-2: Length Dependence of Backward THz-wave Generation in 1D waveguide…………………………………………………..31 3-3: Results of Enhanced Backward THz-wave Generation in 2D waveguide………………………………………………….....37 Chapter4: Conclusion and Future work…………………..40 Chapter5: References………………………………........44

    Chapter 1 references

    [1] Zhipeng Wang,” Generation of Terahertz Radiation via Nonlinear
    Optical Methods” IEEE , VOL. 1, NO. 1, NOV 2100(2002)

    [2] D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V.Rudd, M. Koch, Appl. Phys. B 68, 1085 (1999)

    [3] D.M. Mittleman, “Sensing with Terahertz Radiation” (Springer,
    Berlin, 2003)

    [4] P. R. Smith, D. H. Auston, and M. C. Nuss,
    “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255-256 (1988).

    [5] X.-C., B. B. Hu, J. T. Darrow, and D. H. Auston,
    “Generation of femtosecond electromagnetic pulses from
    semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).

    [6] G.M. Kazakevich, V.M. Pavlov, G.I. Kuznetsov, Y.U.Jeong, S.H. Park, and B.C. Lee, J. Appl. Phys. 102, 034507 (2007).

    [7] M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418-419 (1975).

    [8] K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phy. Lett. 68, 2483-2485 (1996).

    [9] J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004)

    Chapter 2 references
    [1] J.A.Armstrong, N.Bloembergen, J,Ducuing, and P.A.Pershan, Phys. Rev. 127 (1962)

    [2] P.A.Franken and J.F.Ward , Rev. Mod. Phys. 35 (1963)

    [3] M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, IEEE J. Quan. Elec.28 No.11 (1992)

    [4] A.C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, and Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, P. H. Tsao, “Pulsed optical parametric generation, amplification and oscillation in monolithic periodically-poled lithium niobate crystals,” IEEE J. Quantum Electronics 40 ( 2004 ) 791-799

    [5] D.A. Roberts, IEEE J. Quantum Electron. QE-28, 2057 (1992)

    [6] A. Harada, Y. Nihei, Appl. Phys. Lett. 69, 2629 (1996)

    [7] L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, Opt. Lett. 21, 591 (1996)

    [8] Dieter H. Jundt.’’ Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate”Opt.Lett.22

    [9] S.S.Sussman,” Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate”Microwave Lab. Report No.1851(1970)

    [10] S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114-115 (1966).

    [11] T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang,
    “Forward and backward THz-wave generations from periodically
    poled lithium niobate,” Optics Express 16, 6471-5478 (2008).

    [12] Y. J. Ding, J. B. Khurgin, “A new scheme for efficient generation of
    coherent and incoherent submillimeter to THz waves in
    periodically-poled lithium niobate,” Opt. Commun. 148, 105-109 (1998).

    [13] D. A. Bosomword, Appl. Phys. Lett. 9, 330 (1966).

    [14] M. Schall, H. Helm, and S. Keiding, Int. J. Infrared Millimeter Waves 20, 595 (1999).

    [15] L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar,J. Appl. Phys. 97, 123505 (2005).

    [16] A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, and
    Y. C.Huang, “Enhanced terahertz-wave parametric generation and scillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30 ,3392-3394 (2005).

    [17] T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting therahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quant. Electron. 39, 166-171 (2003).

    Chapter 3 references
    [1] L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, (2005).

    [2] E. D. Palik, “Handbook of Optical Constants of Solids”, 695-702 (Academic, New York, 1991).

    [3] T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M.Sperling, and K. Donhuijsen, “Continuous-wave THz Imaging,” Electron. Lett. 37, 1461–1463 (2001).

    [4] Yuzo Sasaki, Yuri Avetisyan, Hiroyuki Yokoyama, Hiromasa Ito,“ Surface-emitted terahertz-wave differencefrequency generation in two-dimensional periodically poled lithium niobate” OPTICS LETTERS. Vol. 30, No. 21(2005)

    [5]A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, and Y. C. Huang, ”Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz wavelength,” Optics Letters 27, 1815-1818 (2005) .

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE