研究生: |
鍾孟遑 Chung, Meng-Huang |
---|---|
論文名稱: |
均衡定價模型評價壽命連結商品──以Swiss Re mortality bond為例 An Equilibrium Pricing Model on Mortality-linked Contingent Claims: The Case of Swiss Re Mortality Bond |
指導教授: | 蔡子晧 |
口試委員: |
楊曉文
韓傳祥 蔡子晧 |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 死亡率債券 、死亡率風險 、保險證券化商品 、均衡定價法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球各地頻頻遭受大型災害,因為地震、海嘯、新型流感、疾病或是恐怖攻擊等造成極端死亡率的出現,嚴重衝擊保險與再保險公司。為了將此系統風險轉移至資本市場,保險與再保險公司發展出死亡率證券化的金融商品,2003年底發行的Swiss Re mortality bond 即為其中最受矚目商品之一。本文假設死亡率為可轉換常態分佈,並在間斷時間經濟模型下,使用均衡定價法對Swiss Re mortality bond定價。此外,類似Wang transform及無套利定價法之結果,本研究推導出風險中立評價關係式,表示任何壽命相關連結商品的價格皆可視為未來期望報酬以無風險利率折現;且本研究方法不似Wang transform需扭曲標的資產的分佈,也不似無套利定價法需要大量的交易資料進行資產複製,更適合用來評價新興且標的資產為不可交易之壽命連結商品。最後導出類似Black-Scholes評價公式的封閉解。
Securitization of catastrophic mortality risk provides an effective approach for the pension funds and insurance companies to transfer the mortality risk to capital market. With the increasing amounts of the mortality-linked contingent claims, a fair and accurate pricing method is necessary. In this paper, we come up with a general equilibrium approach to price the Swiss Re mortality bond in a discrete time economy. We differentiate our approach from other previous ones for assuming a more general distribution, which is known as a transformed normal distribution. Although we start our model under some strict assumptions, including the representative’s preference and the distribution of the wealth and mortality rate, we finally obtain a risk-neutral (preference-free) valuation relationship and the price of mortality bond could be the expected value of its terminal payoff, discounted by the risk-free rate. Furthermore, we find a closed-form solution for pricing the Swiss Re mortality bond.
參考文獻
1. Bauer, D., 2006, An arbitrage-free family of longevity bonds, 49, 1-24.
2. Bauer, D., Börger, M., and Russ, J., 2010, On the pricing of longevity-linked securities, Insurance: Mathematics and Economics 46, 139-149.
3. Bayraktar, E., Milevsky, M. A., David Promislow, S., and Young, V. R., 2009, Valuation of mortality risk via the instantaneous sharpe ratio: Applications to life annuities, Journal of Economic Dynamics and Control 33, 676-691.
4. Bayraktar, E., and Young, V. R., 2007, Hedging life insurance with pure endowments, Insurance: Mathematics and Economics 40, 435-444.
5. Beelders, O., 2004, Modelling mortality risk with extreme value theory: The case of Swiss Re's mortality-indexed bonds, GARP Risk Review 26-29.
6. Blake, D., Cairns, A. J., and Dowd, K., 2006, Living with mortality: Longevity bonds and other mortality-linked securities, British Actuarial Journal 12, 153-197.
7. Biffis, E., 2005, Affine Process for Dynamic mortality and Actuarial Valuations, Insurance: Mathematics and Economics 37, 443-468.
8. Brennan, M. J., 1979, The pricing of contingent claims in discrete time models, Journal of Finance 34, 53-68.
9. Brouhns, N., Denuit, M., and Vermunt J.K., 2002, A Poisson log-bilinear regression approach to the construction of projected life tables, Insurance: Mathematics and Economics 31, 373-393.
10. Cairns, A. J., Blake, D., and Dowd, K., 2006a, Pricing death: Frameworks for the valuation and securitization of mortality risk, ASTIN Bulletin 36, 79-120.
11. Cairns, A. J., Blake, D., and Dowd, K., 2006b, A two factor model for stochastic mortality with parameter uncertainty: Theory and calibration, Journal of Risk and Insurance 73, 687-718.
12. Camara, A., 2003, A generalization of the Brennan-Rubinstein approach for the pricing of derivatives, Journal of Finance 58, 805-819.
13. Chen, H., and Cox, S. H., 2009, Modeling mortality with jumps: Applications to mortality securitization, Journal of Risk and Insurance 76, 727-751.
14. Chen, H., and Cummins, J. D., 2008, Modeling and pricing longevity risk: Permanent jump effects and extreme value approach, FMA annual meeting.
15. Currie I.D., Durban, M. and Eilers, P.H.C., 2004, Smoothing and forecasting mortality rates, Statistical Modelling 4, 279-298.
16. Dahl, M., 2004, Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Economics 35, 113-136.
17. De Waegenaere, A., Melenberg, B., and Stevens, R., 2010, Longevity risk, De Economist 158, 151-192.
18. Denuit, M., Devolder, P., and Goderniaux, A., 2007, Securitization of Longevity Risk: Pricing Survivor Bonds with Wang Transform in the Lee-carter Framework, Journal of Risk and Insurance 74, 87-113.
19. Forfar, D.O., and Smith, D.M., 1987, The changing shape of English life Tables, Transactions of the Faculty of Actuaries 40, 98-134.
20. Lee, R.D., and Carter, L.R., 1992, Modeling and forecasting U.S. mortality, Journal of the American Statistical Association 87, 659-675.
21. Lin, Y., and Cox, S. H., 2008, Securitization of catastrophe mortality risks, Insurance: Mathematics and Economics 42, 628-637.
22. Lin, Y., and Cox, S. H., 2005, Securitization of mortality risks in life annuities, Journal of Risk and Insurance 72, 227-252.
23. Macdonald, A. S., Cairns, A.J.G., Gwilt, P.L., and Miller, K.A., 1998, An international comparison of recent trends in population mortality, British Actuarial Journal 4, 3-141.
24. Macdonald, A. S., Bartlett, D., Berman, C., Daykin, C., Grimshaw, D., Savill, P., 2003, Mortality improvements and the cohort effect, CMI Working Papers 1 and 2; Presented to the Staple Inn Actuarial Society on 11 March 2003; 46 pages. (Available online at http://www.sias.org.uk)
25. Milevsky, M. A., and Promislow, S.D., 2001, Mortality derivatives and the option to annuitise, Insurance: Mathematics and Economics 29, 299-318.
26. Renshaw, A. E., and Haberman, S., 2003, Lee-Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics 33, 255-272.
27. Rogers, R., 2002, Will mortality improvements continue?, National Underwriter 106, 11-23.
28. Rubinstein, M., 1976, The valuation of uncertain income streams and the pricing of options, Bell Journal of Economics 7, 407-425.
29. Slifker, J. F., and Shapiro, S. S., 1980, The Johnson System: Selection and Parameter Estimation, Tecgnometrics 22, 239-246.
30. Vitiello, L., and Poon, S.H., 2009, General equilibrium and preference free model for pricing options under transformed gamma distribution, Journal of Futures Markets 30, 409-431.
31. Wang, S. S., 2000, A class of distortion operators for pricing financial and insurance risks, Journal of Risk and Insurance 67, 15-36.
32. Wang, S. S., 2002, A universal framework for pricing financial and insurance risks, ASTIN Bulletin 32, 213-234.
33. Young, V. R., 2008, Pricing life insurance under stochastic mortality via the instantaneous sharpe ratio, Insurance: Mathematics and Economics 42, 691-703.