研究生: |
劉昌明 Chang-Ming Liu |
---|---|
論文名稱: |
電訊接點配置、幾何及製造參數對微電子元件可靠度影響之研究 A Study of Effects of Solder Joint Layout, Geometry and Manufacturing Parameters on the Reliability of Micro-Electronic Devices |
指導教授: |
江國寧
Kuo-Ning Chiang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 230 |
中文關鍵詞: | 晶圓級晶片尺寸封裝 、混合法 、混合墊片外形 、非線性有限元素分析 、焊錫接點可靠度 、設計參數 、啞球 、橢圓墊片 、製造誤差 |
外文關鍵詞: | wafer level chip scale packaging, hybrid method, hybrid pad shape, nonlinear finite element analysis, solder joint reliability, design parameters, dummy ball, elliptical pad, manufacturing errors |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於電子封裝結構設計及製造過程中,焊錫接點可以多種方式製作,並應用於多種電子封裝結構中以做為電訊通路及結構支持,如覆晶封裝、晶圓級封裝、細節距球柵陣列封裝及晶片尺度封裝。其中焊錫接點外形預估已被視為重要之晶圓級封裝結構設計工具,以提升焊錫接點之可靠度。現今可攜式電子產品之需求正持續增長,高電性表現及低成本之晶圓級晶片尺寸封裝結構預期將成為主流之一,並主要用於記憶體元件中。然而由於晶圓級封裝並未填充底膠,當晶片尺寸較大時,如6x6平方公釐,則將遭遇可靠度不佳之問題。於傳統之晶圓級封裝結構中,焊錫接點之墊片直徑與錫球體積皆相同,此類電子元件於實際運作時,由熱負載所引致之應力/應變將集中於錫球陣列角落區域之焊錫接點上,且其位置通常較為接近晶片側。為改善晶圓級封裝結構之可靠度,本研究提出一結合解析法與能量法之混合法,用以預估封裝結構之接點於同時包含圓形及非圓形墊片之混合墊片式錫球陣列於迴焊過程中之平衡高度與幾何外形,並應用於錫球陣列設計以提升焊錫接點之疲勞壽命。於混合墊片式錫球陣列中,至少包含兩種以上之錫球體積、墊片尺寸或外形,使錫球陣列配置具有多種設計。本研究主要採用有限元素法分析軟體ANSYSâ針對晶圓級封裝結構進行加速熱循環模擬計算,以瞭解焊錫接點之應力應變行為。研究中並配合非線性及參數化有限元素法探討設計參數或項目對於封裝結構可靠度之影響。本研究並針對焊錫接點外形預估及有限元素分析方法進行實驗驗證,以確認模擬計算方法之正當性與適用性。於本研究中所探討之設計參數或項目包含焊錫接點之墊片直徑與錫球體積、晶片與應力緩衝層厚度、應力緩衝層之楊氏模數與熱膨脹係數、焊錫接點陣列配置方式等。於焊錫接點陣列配置設計方面,位於角落區域之焊錫接點可用作啞球,僅用做結構支持而無電訊導通功能,如此之設計預期將有助於分散角落區域之集中應力。除針對主要設計參數進行結構分析外,本研究亦探討設計參數之製造誤差或缺陷對於晶圓級封裝結構可靠度之影響。經由一系列之分析與探討可知,適當加大圓形墊片啞球之尺寸,或設置適當設計及方向之橢圓形墊片實球或啞球,則焊錫接點之最大等效塑性應變將顯著降低,因而可有效提升封裝結構之可靠度。此外,減小晶片厚度與增加應力緩衝層之厚度,以及採用具較低楊氏模數與較高熱膨脹係數之應力緩衝層均有助於改善焊錫接點之疲勞壽命。另一方面,若設計參數包含微量之製造誤差或缺陷,其綜合效應將顯著降低晶圓級封裝結構之可靠度。因此,設計者需經由一系列之分析與研討,以獲得較佳之晶圓級封裝結構設計,並精準控制製造誤差以確保電子元件之品質。於本研究中所獲得之分析結果經由彙整後,可做為相似之面積分佈型態電子封裝結構之設計參考,如晶片尺度封裝、覆晶封裝、細節距球柵陣列封裝等。
During the design and manufacturing processes of electronic packaging, solder joints are fabricated using a variety of methods to provide both mechanical and electrical connections for different applications such as flip-chip, wafer-level packaging, fine-pitch ball grid array (BGA), and chip-scale packaging (CSP). The solder joint shape-prediction methods have been incorporated as a design tool to enhance the reliability of the wafer-level packaging. As the demand for portable electronic equipment increases, wafer-level chip-scale-packaging (WLCSP) is expected to be widely used in static-dynamic random access memory (SDRAM) for its better electrical performance and lower manufacturing costs. However, reliability of solder joints for a large chip size such as 6mm ´ 6mm without underfill assembly is still in question. In conventional WLCSP, the dimensions of each solder ball and each solder pad are the same. The maximum thermally induced stress/strain contours occur on the die-side surface of the solder joint furthest away from the chip center. In this research, a hybrid method combining an analytical algorithm and the energy-based approach are applied to predict standoff heights and geometry profiles of the solder joints. A hybrid-pad-shape (HPS) system is also proposed to design solder ball layout and to enhance the reliability of solder joints. The HPS system contains at least two kinds of solder volume and pad size/shape as well as their relative locations during the reflow process. Next, the commercial finite-element code ANSYSâ is used to simulate the stress/strain behavior of the solder balls in WLCSP under cyclic temperature loadings. A nonlinear and parametric finite-element analysis is conducted to investigate the reliability issues that result from several design parameters. In this research, several experimental validations are completed to verify the correctness and feasibility of solder-joint shape-prediction methods and finite-element analysis procedures. The design parameters considered in this research include solder-joint layout, solder volume, pad diameter, die thickness, and thickness/material properties of the stress buffer layer (SBL). In the aspect of solder joint layout design, the solder joints located in the corner areas can be considered as structure dummy balls with no electrical signals pass through them. This research also discusses the effects of manufacturing errors of design parameters on the reliability of solder joints. The results reveal that as the WLCSP contains larger round pad or suitably oriented elliptical-pad solder joints located in the corner areas underneath the chip, the maximum equivalent plastic strain of the solder joints will be effectively reduced and the solder-joint fatigue life under thermal loading will be greatly enhanced. In addition, thinner die and thicker SBL that have lower Young’s modulus and higher CTE are also good for better reliability in the WLCSP. On the other hand, minor manufacturing errors of design parameters result in unfavorable effects on solder-joint reliability. Therefore, designers should seek the optimal design of electronic components using systematic parametric analysis and accurate control of manufacturing processes so as to ensure superior quality. Furthermore, the findings presented in this research can be used as a design guideline for electronic packaging with area-array interconnections such as CSP, flip-chip packaging, Super CSP and fine-pitch BGA.
1. Lau J. H., Chang C., and Lee S. W. R., “Failure Analysis of Solder Bumped Flip Chip on Low-Cost Substrates,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 1, pp. 19-28, 2000.
2. Wang J. J., Ren W., Zou D. Q. and Liu S., “Effect of Cleaning and Non-Cleaning Situations on the Reliability of Flip Chip Packages,” IEEE Transactions on Components and Packaging Technologies, Vol. 22, No. 2, pp. 221-228, 1999.
3. Todd M., “Effects of Non-Clean Flux Residue on the Performance of Flip-Chip Devices,” Proceeding of International Symposium on Advanced Packaging Material, pp. 180-182, Mar. 6-8, 2000, Braselton, Georgia, USA.
4. Ohshima Y., Nakazawa T., Doi K., Aoki H. and Hiruta Y., “Flip Chip Underfill Reliability of CSP During IR Reflow Soldering,” Proceedings of 35th IEEE International Reliability Physics Symposium, pp. 124-128, Apr. 8-10, 1997, Denver, Colorado, USA.
5. Rzepka S., “Automated FEM Mesh Optimization for Nonlinear Problems Based on Error Estimation,” 5th Int. Conf. On Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, EuroSimE2004, pp. 201-209, May 10-12, 2004, Novotel Tour Noire, Brussels, Belgium.
6. Heinrich S. M., Schaefer M., Schroeder S. A., and Lee P. S., “Prediction of Solder Joint Geometries in Array-Type Interconnects”, ASME Journal of Electronic Packaging, Vol. 118, No. 3, pp. 114-121, 1996.
7. Heinrich S. M., Shakya S., Wang Y., Lee P. S., and Schroeder S. A., “Improved Yield and Performance of Ball-Grid Array Packages : Design and Processing Guideline for Uniform and Non-uniform Arrays”, IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vol. 19, No. 2, pp. 310-319, 1996.
8. Chiang K. N., and Chen W. L., “Electronic Packaging Reflow Shape Prediction for the Solder Mask Defined Ball Grid Array”, ASME Journal of Electronic Packaging, Vol. 120, No.2, pp. 175-178, 1998.
9. Chen W. H., Chiang K. N., and Lin S. R., “Prediction of Liquid Formation for Solder and Non-Solder Mask Defined Array Packages”, ASME Journal of Electronic Packaging, Vol. 124, No.1, pp. 37-44, 2002.
10. Pfeifer M. J., “Solder Bump Size and Shape Modeling and Experimental Validation”, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 20, No. 4, pp. 452-457, 1997.
11. Chiang K. N., and Yuan C. A., “An Overview of Solder Bump Shape Prediction Algorithms with Validations”, IEEE Transactions on Advanced Packaging, Vol. 24, No.2, pp. 158-162, 2001.
12. Brakke K. A., Surface Evolver Manual, version 2.14, The Geometry Center, 1999, 1300 S. Second St., Minneapolis, MN 55454.
13. Brakke K. A., “The Surface Evolver and the Stability of Liquid Surface”, Phil. Trans. R. Soc. Lond. A, Vol. 354, pp. 2143-2157, 1996.
14. Zhao X., Wang C., W G., Zheng G., and Yang S., “An Integrated System for Prediction and Analysis of Solder Interconnection Shapes”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 2, pp. 87-92, 2000.
15. Bailey C., Wheeler D., and Cross M., “An Integrated Modeling Approach to Solder Joint Formation”, IEEE Transactions on Components and Packaging Technology, Vol. 22, No. 4, pp. 497-502, 1999.
16. Nguty T. A., Salam B., and Ekere N. N., “A Parametric Study of The Effects of Process Parameters on the Assembly of Chip Scale Packages”, International Symposium on Advanced Packaging Materials, pp. 208-210, Mar. 6-8, 2000, Chateau Elan, Braselton, Georgia, USA.
17. Sakal H., Yamaoka N., Ujile K., and Motegl M., “Shape Prediction and Residual Stress Evaluation of BGA and Flip Chip Solder Joints”, 7th Inter Society Conference on Thermal Phenomena, pp. 181-186, May 23-26, 2000, Las Vegas, Nevada, USA.
18. Mui G. K., Wu X., Hu K. X., Yeh C. P., and Wyatt K., “Solder Joint Formation Simulation and Finite Element Analysis”, 47th Electronic Components and Technology Conference, pp. 436-443, May 18-21, 1997, San Jose, CA, USA.
19. Tower S. C., Su B., and Lee Y. C., “Yield Prediction for Flip-Chip Solder Assemblies Based on Solder Shape Modeling”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 22, No. 1, pp. 29-37, 1999.
20. Li L., and Yeung B. H., “Wafer Level and Flip Chip Design through Solder Prediction Models and Validation”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 650-654, 2001.
21. Yeung B. H., and Lee T. Y. T., “Evaluation and Optimization of Package Processing, Design, and Reliability through Solder Joint Profile Prediction”, 51st Electronic Components and Technology Conference, pp. 925-930, May 29-June 1, 2001, Orlando, Florida, USA.
22. Chiang K. N., and Liu C. M., “Solder Reflow Prediction of Hybrid Pad Packaging System”, Proc. International Society Conference on Thermal Phenomena, pp. 340-348, May 23-26, 2000, Las Vegas, Nevada, USA.
23. Liu C. M., and Chiang K. N., “Solder Shape Design and Thermal Stress/Strain Analysis of Flip Chip Packaging Using Hybrid Method”, Proc. Int’l Symp on Electronic Materials and Packaging, pp. 44-50, Nov. 30-Dec. 2, 2000, Hong Kong.
24. Maeda K., Higashi M., Kokubu M., and Nakagawa S., “The Application of HITCE Ceramic Material for LGA-type Chip Scale Package”, 50th Electronic Components and Technology Conference, pp. 358-363, May 21-24, 2000, Las Vegas, NV, USA.
25. Matsuzono S., Uegaki S., Sato S., and Matsuda S., “Snap Array CSPTM - Ceramic CSPs for High Performance and High Reliability Applications - ,” 50th Electronic Components and Technology Conference, pp. 1600-1604, May 21-24, 2000, Las Vegas, NV, USA.
26. Zhu J., “Effects of Anchor Pads in Micro-Scale BGA”, 50th Electronic Components and Technology Conference, pp. 1731-1736, May 21-24, 2000, Las Vegas, NV, USA.
27. Sidharth, Valluri V., Gannamani R., and Zhang M., “Characterization of a Novel Fine-Pitch Ball Grid Array Package for Flash Memory Application”, 50th Electronic Components and Technology Conference, pp. 353-357, May 21-24, 2000, Las Vegas, NV, USA.
28. Wu J. D., Ho S. H., Huang C. Y., Liao C. C., Zheng P. J., and Hung S. C., “Board Level Reliability of a Stacked CSP Subjected to Cyclic Bending,” Microelectronics Reliability, Vol. 42, pp. 407-416, 2002.
29. Sato A., “Semiconductor Package Having Enhanced Ball Grid Array Protective Dummy Members,” United States Patent, US 6,287,895 B1, Sep. 11, 2001.
30. Byun H. J., and Lee K. J., “Semiconductor Chip Package Comprising Enhanced Pads,” United States Patent, US 2002/0104874 A1, Aug. 8, 2002.
31. Schueller R. D., “Design Considerations for a Reliable Low Cost Tape Ball Grid Array Package, ” The International Journal of Microcircuits and Electronic Packaging, Vol. 19, No. 2, Second Quarter, pp. 146-154, 1996.
32. Cheng H. C., Chiang K. N., and Chen C. K., “Parametric Analysis of Thermally Enhanced BGA Reliability Using a Finite-Volume-Weighted Averaging Technique”, International Mechanical Engineering Congress and Exposition, EEP-Vol.24, pp. 13-20, Nov. 15-20, 1998, Anaheim, CA, USA.
33. Chiang K. N., Lin Y. T., and Cheng H. C., “On Enhancing Eutectic Solder Joint Reliability Using a Second-Reflow-Process Approach”, IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, pp. 9-14, 2000.
34. Chiang K. N., and Liu C. M., “A Comparison of Thermal Stress/Strain Behavior of Elliptical/Round Solder Pads”, ASME Journal of Electronic Packaging, Vol. 123, No.2, pp. 127-131, 2001.
35. Liu C. M., and Chiang K. N., “Solder Bumps Layout Design and Reliability Enhancement of Wafer Level Packaging,” International Symposium on Experimental Mechanics, Dec. 28-30, 2002, The Grand Hotel, Taipei, Taiwan, R.O.C.
36. Kang I. S., Kim J. H., Park I. S., Hur K. R., and Cho S. J., “ The Solder Joint and Runner Metal Reliability of Wafer-Level CSP (Omega-CSP) ”, 50th Electronic Components and Technology Conference, pp. 87-92, May 21-24, 2000, Las Vegas, NV, USA.
37. Kim J. Y., Kang I. S., Park M. G., Kim J. H., Cho S. J., Park I. S., and Chun H. S., “Characterization of Wafer Level Package for Mobile Phone Application,” 51st Electronic Components and Technology Conference, pp. 1-4, May 29-June 1, 2001, Orlando, Florida, USA.
38. Kazama A., Satoh T., Yamaguchi Y., Anjoh I., and Nishimura A., “Development of Low-Cost and Highly Reliable Wafer Process Package”, 51st Electronic Components and Technology Conference, pp. 40-46 , May 29-June 1, 2001, Orlando, Florida, USA.
39. Lee K. O., Yu J., Kim J. Y., and Park I. S., “Thermo-Mechanical Reliability of the Benzocyclobutene(BCB) Film in a WLCSP Process”, Int’l Symposium on Electronic Materials and Packaging, pp. 84-87, Nov. 19-22, 2001, Korea.
40. Mercado L., Sarihan V., Guo Y. F., and Mawer A., “Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages”, 49th Electronic Components and Technology Conference, pp. 255-259, June 1-4, 1999, San Diego, CA, USA.
41. Mercado L. L., and Sarihan V., “Predictive Design of Flip-Chip PBGA for High Reliability and Low Cost”, 49th Electronic Components and Technology Conference, pp. 1111-1115, June 1-4, 1999, San Diego, CA, USA.
42. Nagaraj B., “OMPAC Package C5 Reliability - Parametric Study”, ASME Journal of Electronic Packaging, Vol. 121, No. 1, pp. 18-22, 1999.
43. Michaelides S., and Sitaraman S. K., “Die Cracking and Reliable Die Design for Flip-Chip Assemblies”, IEEE Transactions on Advanced Packaging, Vol. 22, No. 4, pp. 602-613, 1999.
44. Michaelides S., and Sitaraman S. K., “Effect of Material and Geometry Parameters on the Thermo-Mechanical Reliability of Flip-Chip Assemblies,” 6th Inter Society Conference on Thermal Phenomena, pp. 193-200, May 27-30, 1998, Seattle, Washington, USA.
45. Guo Y. F., and Zhao J. H., “A Practical Die Stress Model and Its Applications in Flip-Chip Packages”, Inter Society Conference on Thermal Phenomena, pp. 393-399, May 23-26, 2000, Las Vegas, NV, USA.
46. Popelar S. F., “An Investigation into the Fracture of Silicon Die used in Flip Chip Applications”, 4th International Symposium on Advanced Packaging Materials : Processes, Properties and Interfaces, pp. 41-48, Mar. 15-18, 1998, Chateau Elan, Braselton, Georgia, USA.
47. Yeh C. P., Zhou W. X., and Wyatt K., “Parametric Finite Element Analysis of Flip Chip Reliability”, The International Journal of Microcircuits and Electronic Packaging, Vol. 19, No. 2, Second Quarter, pp. 120-127, 1996.
48. Goh T. J., “Parametric Finite Element Analysis of Solder Joint Reliability of Flip Chip On Board”, 2nd IEEE/CPMT Electronics Packaging Technology Conference, pp. 57-62, Dec. 8-10, 1998, Raffles City Convention Center, Singapore.
49. Klein Wassink, R. J., Soldering in Electronics, 2nd ed., pp. 36-42, 1989, Electrochemical Publications Limited.
50. Grossman S. I., and Derrick W. R., Advanced Engineering Mathematics, pp. 645-653, 1988, Harper & Row, Publishers, Inc.
51. Lau J. H., Ball Grid Array Technology, McGraw-Hill, Inc., New York, pp. 160-161, 382, 1995.
52. Coffin L. F. Jr., and Schenectady N. Y., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Trans. ASME, 76, pp. 931-950, 1954.
53. Manson S. S., Thermal Stress and Low Cycle Fatigue, McGraw-Hill Book Co., Inc., Ny., pp. 125-192, 1966.
54. Solomon H. D., “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-9, pp. 91-104, 1986.
55. Lau J. H., “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical, and Vibrational Conditions,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 4, pp. 728-735, 1996.
56. Sakurai M., Shibuya H., and Utsunomiya J., “FEM Analysis of Flip-Chip Type BGA,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 131-136, Apr. 27-29, 1998, Berlin, Germany.
57. Satoh R., Arakawa K., Harada M., and Matsui K., “Thermal Fatigue Life of Pb-Sn Alloy Interconnections,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 14, No. 1, pp. 224-232, 1991.
58. Shi X. Q., Pang H. L. J., Zhou W., and Wang Z. P., “Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal of Fatigue, Vol. 22, pp. 217-228, 2000.
59. Lau J. H., “Experimental and Analytical Studies of 28-pin Thin Small Outline Package (TSOP) Solder-Joint Reliability,” ASME Journal of Electronic Packaging, Vol. 114, pp. 169-176, 1992.
60. Zhao B., Andrew A. O. T., Tummala R. R., Wong C. P., Zhang Z., and Doraiswami R., “Simulation of Fatigue Life of Solder Ball Joints of an Ultra-Fine-Pitch Wafer Level Package,” 5th Electronics Packaging Technology Conference, pp. 683-686, Dec. 10-12, 2003, Singapore.
61. Yang D. G., Zhang G. Q., Ernst L. J., Caers J. F. J., Bressers H. J. L., and Janssen J., “Combined Experimental and Numerical Investigation on Flip Chip Solder Fatigue with Cure-Dependent Underfill Properties,” 51st Electronic Components and Technology Conference, pp. 919-924, May 29-June 1, 2001, Orlando, Florida, USA.
62. Darveaux R., Banerji K., Mawer A., and Dody G., “Reliability of Plastic Ball Grid Array Assembly,” Chapter 13 in Ball Grid Array Technology, Ed. Lau, J. H., McGraw-Hill, pp. 379-442, 1995.
63. Darveaux R., “Effect of Simulation Methodology on Solder Joint Crack Growth Correlation,” 50th Electronic Components and Technology Conference, pp.1048-1058, May 21-24, 2000, Las Vegas, Nevada, USA.
64. Darveaux R., “Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction,” ASME Journal of Electronic Packaging, Vol. 124, No. 3, pp. 147-154, 2002.
65. Zhang L., Sitaraman R., Patwardhan V., Nguyen L., and Kelkar N., “Solder Joint Reliability Model with Modified Darveaux’s Equations for the Micro SMD Wafer Level-Chip Scale Package Family,” 53rd Electronic Components and Technology Conference, pp. 572-577, May 27-30, 2003, New Orleans, Louisiana, USA.
66. Zhang L., Arora V., Nguyen L., and Kelkar N., “Numerical and Experimental Analysis of Large Passivation Opening for Solder Joint Reliability Improvement of Micro SMD Packages,” Microelectronics Reliability, Vol. 44, pp. 533-541, 2004.
67. Yeo A., Lee C., and Pang J. H. L., “Flip Chip Solder Joint Fatigue Life Model Investigation,” 4th Electronics Packaging Technology Conference, pp. 107-114, Dec. 10-12, 2002, Singapore.
68. Lau J. H., Lee S. W. R., and Chang C., “Solder Joint Reliability of Wafer Level Chip Scale Packages (WLCSP) : A Time-Temperature-Dependent Creep Analysis,” ASME Journal of Electronic Packaging, Vol. 122, No. 4, pp. 311-316, 2000.
69. Shi X. Q., Wang Z. P., Zhou W., Pang H. L. J., and Yang Q. J., “A New Creep Constitutive Model for Eutectic Solder Alloy,” ASME Journal of Electronic Packaging, Vol. 124, No. 2, pp. 85-90, 2002.
70. Ham S. J., and Lee S. B., “Measurement of Creep and Relaxation Behaviors of Wafer-Level CSP Assembly Using Moiré Interferometry,” ASME Journal of Electronic Packaging, Vol. 125, No. 2, pp. 282-288, 2003.
71. Clech J. P., “BGA, Flip-Chip and CSP Solder Joint Reliability of the Importance of Model Validation, ” InterPack ‘99, pp. 211-217, June 13-19, 1999, Maui, Hawaii, USA.
72. Judith G., “Microstructure and Mechanical Properties of Pb-Free Solder Alloy for Low Cost Electronic Assembly : A Review”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 693-700, 1994.
73. Liu Z. N., “Design and Reliability Analysis of No Underfill Flip Chip Package”, Master’s Degree Thesis of Department of Power Mechanical Engineering, National Tsing Hua University, pp. 38-62, 2000.
74. Chiang K. N., Liu Z. N., and Peng C. T., “Parametric Reliability Analysis of No-Underfill Flip Chip Package,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, Issue : 4, pp. 635-640, 2001.
75. Michael G. P., Rakesh A., Patrick M., Terrance D., Sirus J., and Rahul M., Electronic Packaging Materials and Their Properties, CRC Press LLC, New York, pp. 15-48, 1999.
76. Hong B. Z., and Su L. S., “On Thermal Stresses and Reliability of a PBGA Chip Scale Package”, 48th Electronic Components and Technology Conference, pp. 503-510, May 25-28, 1998, Seattle, Washington, U.S.A,
77. Riemer D. E., “ Prediction of Temperature Cycling Life for SMT Solder Joints on TCE-Mismatched Substrates.,” 40th Electronic Components and Technology Conference, pp. 418-425, May 20-23, 1990, Las Vegas, NV, U.S.A.
78. Chiang K. N., Memrep Material Database, Department of Power Mechanical Engineering of National Tsing Hua University, CSML Lab., Ver. 2.0 Beta, 1998.
79. JEDEC Standard – Temperature Cycling, JESD22-A104-B, JEDEC Solid State Technology Association, pp. 5, July, 2000.
80. Chen S. T., “Out-of plane thermal expansion coefficient of biphenyldian - hydride - phenylenediamine polyimide film”, Journal of Electronic Material, Vol. 22, No. 7, pp. 797-805, 1993.
81. Pecht M., and Wu X., “Characterization of polyimide used in high density interconnects,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part. B., Vol. 17, No. 4, pp. 632-639, 1994.
82. Pecht M., Wu X., Paik K. W., and Bhaudarkar S. N., “To cut or not to cut : A thermo-mechanical stress analysis of polyimide thin-film on ceramic structures”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 18, No. 1, pp. 150-153, 1995.
83. Jog M. A., ”Effect of elastio-plastic behavior of epoxy on thermal stress in TAB packaging”, The International Society for Hybrid Microelectronics, Vol. 19, No. 3, pp. 308-316, 1996.
84. Hamano T., Kawahara T., and Kasi J., “Super CSPTM : WLCSP Solution for Memory and System LSI”, International Symposium on Advanced Packaging Materials, pp. 221-225, Mar 14-17, 1999, Chateau Elan, Braselton, Georgia, U.S.A.
85. The Micro Grid ArrayTM – MGA, ChipScale, Inc., CA, USA, http://www.chipscale.com/Technology/MGA/mga.htm
86. Ultra CSPTM Design Guide, Kulicke & Soffa, Flip Chip Division, PA, USA, pp. 8, http://www.kns.com/prodserv/flipchip/pdf/ultraCSP_designguide.pdf
87. Lin Y. T., Peng C. T., and Chiang K. N., “Parametric Design and Reliability Analysis of Wire Interconnect Technology Wafer Level Packaging,” ASME Journal of Electronic Packaging, Vol. 124, pp.234-239, 2002.
88. Chang K. C., “Study of Effects of Cu Stud Design and IMC Growth on the Reliability of Microelectronic Devices,” Ph.D. Dissertation, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, R.O.C., pp. 57-84, 2003.
89. Gonzalez M., Vandevelde B., Bulcke M. V., Winters C., Beyne E., Lee Y. J., Larson L., Harkness B. R., Mohamed M., Meynen H., and Vanlathem E., “An Analysis of the Reliability of a Wafer Level Package (WLP) Using a Silicone Under the Bump (SUB) Configuration,” 53rd Electronic Components and Technology Conference, pp. 857-863, May 27-30, 2003, New Orleans, Louisiana, USA.
90. Gardner G., Harkness B., Ohare E., Meynen H., Bulcke M. V., Gonzalez M., and Beyne E., “Integration of a Low Stress Photopatternable Silicone into a Wafer Level Package,” 54th Electronic Components and Technology Conference, pp. 170-174, June 1-4, 2004, Las Vegas, NV, USA.
91. Gonzalez M., Bulcke M. V., Vandevelde B., Beyne E., Lee Y., Harkness B., and Meynen H., “Finite Element Analysis of an Improved Wafer Level Package using Silicone Under Bump (SUB) Layers,” 5th Int. Conf. On Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, EuroSimE2004, pp. 163-168, May 10-12, 2004, Novotel Tour Noire, Brussels, Belgium.
92. Kawahara T., “SuperCSPTM”, IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 215-219, 2000.
93. Lin J. C., “Design, Reliability and Thermal Analysis of Micro-Electronic Devices Packaging,” Ph.D. Dissertation, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, R.O.C., pp. 82-93, 2003.
94. Liao E. B., Ang S. S., Tay A. A. O., Feng H. H., Nagarajan R., and Kripesh V., “Fabrication and Parametric Study of Wafer-Level Multiple-Copper-Column Interconnect,” 54th Electronic Components and Technology Conference, pp. 1251-1255, June 1-4, 2004, Las Vegas, NV, USA.
95. Rzepka S., Höfer E., Simon J., Meusel E., and Reichl H., “Stress Analysis and Design Optimization of a Wafer-Level CSP by FEM Simulations and Experiments,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, pp.127-137, 2002.
96. Bakir M. S., Reed H. A., Thacker H. D., Patel C. S., Kohl P. A., Martin K. P., and Meindl J. D., “Sea of Leads (SoL) Ultrahigh Density Wafer-Level Chip Input/Output Interconnections for Gigascale Integration (GSI),” IEEE Transactions on Electron Devices, Vol. 50, No. 10, pp. 2039-2048, 2003.
97. Bakir M. S., Dang B., Emery R., Vandentop G., Martin K. P., Kohl P. A., and Meindl J. D., “Chip Integration of Sea of Leads Compliant I/O Interconnections for the Ultimate Enabling of Chips with Low-k Interlayer Dielectrics,” 54th Electronic Components and Technology Conference, pp. 1167-1173, June 1-4, 2004, Las Vegas, USA.
98. Liu S. C., “3D Structure Design and Reliability Analysis of Wafer Level Package with Bubble-Like Stress Buffer Layer,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, R.O.C., pp. 41-53, 2003.
99. Zhu Q., Ma L., and Sitaraman S. K., “Design Optimization of One-Turn Helix : A Novel Compliant Off-Chip Interconnect, ” IEEE Transactions on Advanced Packaging, Vol. 26, No. 2, pp. 106-112, 2003.
100. Lo G., and Sitaraman S. K., “G-Helix : Lithography-Based Wafer-Level Compliant Chip-to-Substrate Interconnects,” 54th Electronic Components and Technology Conference, pp.320-325, June 1-4, 2004, Las Vegas, NV, USA.
101. Zhu Q., Ma L., and Sitaraman S. K., “Development of G-Helix Structure as Off-Chip Interconnect,” ASME Journal of Electronic Packaging, Vol. 126, No. 2, pp. 237-246, 2004.
102. Elenius P., Barrett S., and Goodman T., “Ultra CSPTM – A Wafer Level Package”, IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 220-226, 2000.
103. Yang H., Elenius P., and Barrett S., “Ultra CSPTM Bump on Polymer Structure”, International Symposium on Advanced Packaging Materials, pp. 211-215, Mar. 6-8, 2000, Chateau Elan, Braselton, Georgia, USA.
104. Kim D. H., Elenius P., Johnson M., and Barrett S., “Solder Joint Reliability of a Polymer Reinforced Wafer Level Package,” Microelectronics Reliability, Vol. 42, pp. 1837-1848, 2002.
105. Kim D. H., Elenius P., and Barrett S., “Solder Joint Reliability and Characteristics of Deformation and Crack Growth of Sn-Ag-Cu Versus Eutectic Sn-Pb on a WLP in a Thermal Cycling Test,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, pp. 84-90, 2002.
106. Novitsky J., and Pedersen D., “FormFactor Introduces an Integrated Process for Wafer-Level Packaging, Burn-in Test, and Module Level Assembly,” International Symposium on Advanced Packaging Materials, pp. 226-231, Mar. 14-17, 1999, Chateau Elan, Braselton, Georgia, U.S.A.
107. Topper M., Auersperg J., Glaw V., Kaskoun K., Prack E., Keser B., Coskina P., Jager D., Petter D., Ehrmann O., Samulewicz K., Meinherz C., Fehlberg S., Karduck C., and Reichl H., “Fab Integrated Packaging (FIP) : A New Concept for High Reliability Wafer-Level Chip Size Packaging”, 50th Electronic Components and Technology Conference, pp. 74-80, May 21-24, 2000, Las Vegas, USA.
108. Topper M., Glaw V., Coskina P., Auersperg J., Samulewicz K., Lange M., Karduck C., Fehlgerg S., Ehrmann O., and Reichi H., “Wafer Level Package Using Double Balls”, International Symposium on Advanced Packaging Materials, pp. 198-200, Mar. 6-8, 2000, Chateau Elan, Braselton, Georgia, USA.
109. Simon J., and Reichl H., “Board Level Reliability of a Waferlevel CSP using Stacked Solder Sphere and a Solder Support Structure (S3),” 50th Electronic Components and Technology Conference, pp. 81-86, May 21-24, 2000, Las Vegas, USA.
110. Keser B., Yeung B., White J., and Fang T., “Encapsulated Double-Bump WL-CSP : Design and Reliability,” 51st Electronic Components and Technology Conference, pp. 35-39, May 29-June 1, 2001, Orlando, Florida, USA.
111. Rzepka S., Höfer E., Simon J., Meusel E., and Reichl H., “Stress Analysis and Design Optimization of a Wafer-Level CSP by FEM Simulations and Experiments,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, pp. 127-137, 2002.
112. Patwardhan V., Nguyen H., Zhang L., Kelkar N., and Nguyen L., “Constrained Collapse Solder Joint Formation for Wafer-Level-Chip-Scale Packages to Achieve Reliability Improvement,” 54th Electronic Components and Technology Conference, pp. 1479-1485, June 1-4, 2004, Las Vegas, USA.
113. Vandevelde B., Beyne E., Zhang G. Q., Caers J., Vandepitte D., Baelmans M., “Parameterized Modeling of Thermomechanical Reliability for CSP Assemblies, ” ASME Journal of Electronic Packaging, Vol. 125, No. 4, pp. 498-505, 2003.
114. Li Y., Xie J. Verma T., and Wang V., “Reliability Study of High-Pin-Count Flip-Chip BGA,” 51st Electronic Components and Technology Conference, pp. 276-280, May 29-June 1, 2001, Orlando, Florida, USA.
115. Yunus M., Srihari K., Pitarresi J. M., and Primavera A., “Effect of Voids on the Reliability of BGA/CSP Solder Joints,” Microelectronics Reliability, Vol. 43, pp. 2077-2086, 2003.
116. Chan Y. W., Ju T. H., Hareb S. A., Lee Y. C., Wu J. S., and Lii M. J., “Reliability Modeling for Ball Grid Array Assembly with a Large Number of Warpage Affected Solder Joints,” ASME Journal of Electronic Packaging, Vol. 124, No. 3, pp. 246-253, 2002.
117. Li Y., “Accurate Predictions of Flip Chip BGA Warpage,” 53rd Electronic Components and Technology Conference, pp. 549-553, May 27-30, 2003, New Orleans, Louisiana, USA.
118. Chng A. C., Tay A. A. O., Lim K. M., and Wong E. H., “Fatigue Life Estimation of a Stretched-Solder-Column Ultra-Fine-Pitch Wafer Level Package Using the Macro-Micro Modeling Approach,” 54th Electronic Components and Technology Conference, pp. 1586-1591, June 1-4, 2004, Las Vegas, NV, USA.
119. Keser B., Wetz L., and White J., “WL-CSP Reliability with Various Solder Alloys and Die Thickness,” Microelectronics Reliability, Vol. 44, pp. 521-531, 2004.
120. Wetz L., White J., and Keser B., “Improvement in WL-CSP Reliability by Wafer Thinning,” 53rd Electronic Components and Technology Conference, pp. 853-856, May 27-30, 2003, New Orleans, Louisiana, USA.
121. Lau J. H., and Lee S. -W. R., “Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP),” IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 1, pp. 3-14, 2002.
122. Logan D. L., “A First Course in the Finite Element Method,” Brooks/Cole, 3rd Edition, pp. 532-558, 2002.
123. 品管學會及可靠度推行委員會,可靠度工程實務,財團法人中衛發展中心,頁395-407,1994。
124. Faires J. D., and Burden R., Numerical Methods, 2/E, Thomson Learning, Inc., pp. 383-386, 1998.
125. Lau J. H., and Pao Y. H., Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill companies, Inc., pp. 29-32, 1997.
126. Dai S. H., and Wang M. O., Reliability Analysis in Engineering Applications, Van NosTrand Reinhold, New York, pp. 337-397, 1992.
127. Mann N. R., Schafer R. E., and Singpurwalla N. D., Methods for Statistical Analysis of Reliability and Life Data, John Wiley & Sons, Inc., New York, pp. 184-258, 1974.
128. 黃文璋,數理統計,華泰文化,初版,頁401-452,2003。
129. 蘇朝墩,產品穩健設計,中華民國品質學會,第二版,頁9-36,2000。
130. Montgomery D. C., 2001, Design and Analysis of Experiments, John Wiley & Sons, 5th Edition, pp. 213-270, 2001.
131. Holman J. P., Experimental Methods for Engineers, Seventh Edition, McGraw-Hill, New York, pp. 48-143, 2001.
132. Adamson A. W., and Gast A. P., Physical Chemistry of Surfaces, John Wiley & Sons, Sixth Edition, pp. 4-47, 1997.
133. Chatterjee J., “Limiting Conditions for applying the spherical section assumption in contact angle estimation,” Journal of Colloid and Interface Science, Vol. 259, pp. 139-147, 2003.
134. Ugural A. C., and Fenster S. K., Advanced Strength and Applied Elasticity, 3rd Edition, Prentice-Hall, pp. 147-177, 1995.
135. Chen W. F., and Han D. J., Plasticity for Structural Engineers, Cau Lih, Taipei, pp. 239-249, 1995.
136. Cook R. D., Malkus D. S., and Plesha M. E., Concepts and Applications of Finite Element Analysis, John Wiley & Sons, 3rd Edition, pp. 109-196, 1989.
137. Ansys Theory Manual, ANSYS Inc., Release 5.3, pp. 2-1~4-66.
138. Lau J. H., and Pao Y. S., Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, pp. 153-328, 1997.
139. Operating Manual OCA, dataphysics, pp. 18-46.
140. Long J., and Chen P., “Surface Characterization of Hydrosilylated Polypropylene : Contact Angle Measurement and Atomic Force Microscopy,” American Chemical Society, Langmuir, Vol. 17, No. 10, pp. 2965-2972, 2001.