簡易檢索 / 詳目顯示

研究生: 王定遠
Wang, Ting-Yuan
論文名稱: 研究果蠅神經網路連結體的神經生物資訊學工具
Neuroinformatics Tools for Studying Drosophila Connectome
指導教授: 江安世
Chiang, Ann-Shyn
口試委員: 李定國
Lee, Ting-Kuo
施奇廷
Shih, Chi-Tin
荊宇泰
Ching, Yu-Tai
林俊淵
Lin, Chun-Yuan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 129
中文關鍵詞: 神經資訊學神經體學神經影像驅動影像視覺化切片
外文關鍵詞: neuroinformatics, connectome, neuron image, driver image, visualization, segmentation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解神經網路體學,神經科學學家製造出大量神經影像,為了進一步分析這些影像,科學家需要透過一系列的自動化軟體工具來標準化影像之間的差異以利之後的分析。此論文中,我們以果蠅當作模式生物來研究神經網路體。我們實驗室已經累積了28,573筆單一神經影像和大約10,000筆果蠅的驅動影像。首先,我們先設計了一套演算法(NeuroRetriever)能夠大規模且自動地從共軛焦顯微鏡掃描出的螢光影像圈選出單一神經元。這套方法主要是藉由對原始影像做一系列的前處理,在不同的螢光強度閾值的濾鏡下,我們建立了一個高動態範圍的閾值設定法來決定神經結構特徵,且能夠反映出神經元上的神經分支。藉由NeuroRetriever我們成功地從22,037筆原始影像中圈選出28,125筆和人工圈選不相上下的單一神經影像。接下來我們建立了一個收集超過1億筆影像比對結果的資料庫(FlyDriver),此資料庫包含了單一神經元影像比對驅動影像和驅動影像比對驅動影像。藉由這些結果,資料庫能夠根據使用者所選定的特定神經元,找出專一性表達這些特定神經元的驅動果蠅影像。而那些找不到有任何驅動果蠅表達的特定神經元,我們可以利用驅動影像的連集和交集來產生可能的影像配對,將可能的果蠅配對結果提供給使用者。最後我們提供了一個用來最佳視覺化果蠅神經的演算法(Kaleido)。此方法能夠透過瀏覽器至少同時顯示一萬顆神經,只需要適量的記憶體而沒有增加太多計算時間。在增加顯示神經影像時只需要增加一點點的記憶體空間。最重要的是Kaleido在視覺化時能夠以最佳的色彩對比套色在鄰近的神經元,讓這些鄰近的神經元可以輕鬆地被辨識出來。以上所提到的工具全部都已經整合在FlyCircuit之中,使用者可以藉由FlyCircuit在線上測試他們的資料。


    There were massive neuron images were generated for Connectomics and need to be standardized with automatically tools for further application. To decipher connectome of Drosophila, we have imaged 28,573 single neuron images and 10,000 driver expression images. In the beginning, we have designed an automatic algorithm, NeuroRetriever, for unbiased large-scale segmentation of single neurons from confocal fluorescence images. Using a high-dynamic-range thresholding method to segment single neurons based on branch-specific structural features, by pre-processing the raw images under a wide range of intensity thresholds. Using NeuroRetriever, we successfully retrieved 28,125 single-neuron images from 22,037 raw brain images validated by human segmentation. Next, we have built a database, named FlyDriver, to compare more than 100 million image pairs, i.e., neuron-to-driver and driver-to-driver image pairs. We illustrated the utility of these neuron-driver image-matching data for identifying the putative driver expressed in the target neuron and finding some specific driver covering a set of neuron images. For some particular neuronal ensemble that cannot be specifically represented in one single driver, we used the associated image information among drivers to predict possible intersection or union driver pairs for multiple gene expressions. Finally, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. All of these tools were integrated into FlyCircuit as a plug-in function. Users could test their own data on-line with FlyCircuit.

    Abstract ii 中文摘要 iii Preface iv Acknowledgement v Table of contents vii Index of figures & tables ix 1. Introduction 1 1.1. Artificial intelligence in current neuroscience 1 1.2. Single neuron reconstruction procedures 2 1.3. Specific aim of NeuroRetriever 3 1.4. Drosophila as the animal model for manipulating neuronal circuit 3 1.5. Current fly driver collection 4 1.6. Specific aim of FlyDriver 5 1.7. Visualization is necessary for connectomics 5 1.8. Current limitation of multiple neuron visualization 6 1.9. Specific aim of Kaleido 6 2. Material and method 8 2.1. Source of images for NeuroRetriever 8 2.2. Neuron segmentation basic concept 8 2.3. FAST: extracting the structural features 9 2.4. BRS: Scoring the structural importance of voxels 10 2.5. NeuroSlim: reducing the thickness of branches for visualization 13 2.6. Quantitative validation of the NR results 14 2.7. Transgenic flies and sample preparation for FlyDriver 15 2.8. Driver image acquisition 16 2.9. Driver image pre-processing 16 2.10. Brain image reduction and detection system 17 2.11. The basic concept of Kaleido 18 2.12. Scaling of the Kaleido algorithm 20 2.13. Web user interface of Kaleido 21 2.14. Implemented method of Kaleido 21 3. Results 22 3.1. How NeuroRetriever works 22 3.2. NeuroRetriever mimics human segmentation 24 3.3. Validation of NR-segmented results 25 3.4. NeuroSlim visualization 27 3.5. Collected drivers of FlyDriver 28 3.6. Effective image file compression 29 3.7. Calculate overlap region between images with fuzzy image-matching algorithm 29 3.8. Double expression by images 31 3.9. FlyDriver web interface 32 3.10. Kaleido optimized color contrast in neighbor neurons 32 3.11. Connectomic-scale visualization with Kaleido 33 3.12. Performance of Kaleido 34 4. Discussion 36 4.1. NeuroRetriever standardized the neuron segmentation to reconstruct single neuron 36 4.2. NeuroRetriever could segment neuron feature from multidimensional neuronal image 37 4.3. FlyDriver is a database of multidimensional neuronal images 37 4.4. Fuzzy image matching algorithm could compensate the variation between images 38 4.4. FlyDriver can aid intersection pair design for generating specific driver 39 4.5. Monitoring connectomics data on line with Kaleido 40 5. Reference 42 6. Figures and figure legends 47 7. Tables 75 8. Appendix 76 8.1 Publications 76

    Agaian, S.S., Silver, B., and Panetta, K.A. (2007). Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans Image Process 16: 741-758.
    Alivisatos, A.P., et al. (2012). The brain activity map project and the challenge of functional connectomics. Neuron 74: 970-974.
    Arganda-Carreras, I., et al. (2015). Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers in Neuroanatomy 9: 142.
    Ascoli, G.A., Donohue, D.E., and Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. Journal of Neuroscience 27(35): 9247-9251.
    Binder, K., and Heermann, D. (2010). Monte Carlo simulation in statistical physics: an introduction (5th ed.). New York: Springer.
    Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10: 186-198.
    Chiang, A.S., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology 21(1): 1-11.
    Chin, A.L., Lin, C.Y., Fu, T.F., Dickson, B.J., and Chiang, A.S. (2014). Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum. Journal of Comparative Neurology 522: 3795-3816.
    Chung, K., and Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nature Methods 10: 508-513.
    Costa, M., Manton, J.D., Ostrovsky, A.D., Prohaska, S., and Jefferis, G.S. (2016). NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91(2): 293-311.
    Eichler, K., et al. (2017). The complete connectome of a learning and memory centre in an insect brain. Nature 548: 175-182.
    Engel, K., Kraus, M., and Ertl, T. (2001). High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware (HWWS '01), Hanspeter Pfister (Ed.). ACM, New York, NY, USA, 9-16.
    Erturk, A., Lafkas, D., and Chalouni, C. (2014). Imaging cleared intact biological systems at a cellular level by 3DISCO. Journal of Visualized Experiments 89. https://doi.org/10.3791/51382
    Fore, T.R., et al. (2011). Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS. Journal of Visualized Experiments 52. https://doi.org/10.3791/2649
    Ganglberger, F., et al. (2014). Structure-based neuron retrieval across Drosophila brains. Neuroinformatics 12: 423-434.
    Goldberg, I.G., et al. (2005). The open microscopy environment (OME) data model and XML file: open tools for informatics and quantitative analysis in biological imaging. Genome Biology 6(5). https://doi.org/10.1186/gb-2005-6-5-r47
    Haehn, D., et al. (2017). Scalable interactive visualization for connectomics. Informatics 4(3): 29. https://doi.org/10.3390/informatics4030029
    Halavi, M., Hamilton, K.A., Parekh, R., and Ascoli, G.A. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in Neuroscience 6: 49. https://doi.org/10.3389/fnins.2012.00049
    Hama, H., et al. (2011). Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience 14: 1481-1488.
    Hampel, S., et al. (2011). Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nature Methods 8(3): 253-259.
    Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron 95: 245-258.
    Hassan, M., Shamas, M., Khalil, M., El Falou, W., and Wendling, F. (2015). EEGNET: An open source tool for analyzing and visualizing M/EEG connectome. PLOS One 10(9). https://doi.org/10.1371/journal.pone.0138297
    Hayashi, S., et al. (2002). GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34: 58-61.
    He, G.W., Wang, T.Y., Chiang, A.S. and Ching, Y.T. (2018). Soma detection in 3D images of neurons using machine learning technique. Neuroinformatics 16(1): 31-41.
    Horikawa, T., and Kamitani, Y. (2017). Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications 8. https://doi.org/10.1038/ncomms15037
    Hwu, Y., and Margaritondo, G. (2013). Phase contrast: the frontier of x-ray and electron imaging PREFACE. Journal of Physics D: Applied Physics 46. https://doi.org/10.1088/0022-3727/46/49/490301
    Jefferis, G.S., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128: 1187-1203.
    Jenett, A., et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell reports 2: 991-1001.
    Kvon, E.Z., et al. (2014). Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512: 91-95.
    Lai, J.S., Lo, S.J., Dickson, B.J., and Chiang, A.S. (2012). Auditory circuit in the Drosophila brain. Proceedings of the National Academy of Sciences of the United States of America 109: 2607-2612.
    Landhuis, E. (2017). Neuroscience: big brain, big data. Nature 541(7638): 559-561.
    LaPlante, R.A., Douw, L., Tang, W., and Stufflebeam, S.M. (2014). The Connectome visualization utility: software for visualization of human brain networks. PLOS One 9(12). https://doi.org/10.1371/journal.pone.0113838
    Lee, P.C., Chuang, C.C., Chiang, A.S., and Ching, Y.T. (2012). High-throughput computer method for 3D neuronal structure reconstruction from the image stack of the Drosophila brain and its applications. PLOS Computational Biology 8. https://doi.org/10.1371/journal.pcbi.1002658
    Lee, T., and Luo, L. (2001). Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neuroscience 24(5): 251-254.
    Livet, J., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166): 56-62.
    Lin, C.W., et al. (2015). Automated in situ brain imaging for mapping the Drosophila connectome. Journal of Neurogenetics 29: 157-168.
    Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128: 1205-1217.
    Lin, H.H., Chu, L.A., Fu, T.F., Dickson, B.J., and Chiang, A.S. (2013). Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science 340: 1338-1341.
    Lin, Y.C., et al. (2017). Differential synchrotron X-ray imaging markers based on the renal microvasculature for tubulointerstitial lesions and glomerulopathy. Scientific Reports 7. https://doi.org/10.1038/s41598-017-03677-x
    Magliaro, C., Callara, A.L., Vanello, N., and Ahluwalia, A. (2017). A manual segmentation tool for three-dimensional neuron datasets. Frontiers in Neuroinformatics 11. https://doi.org/10.3389/fninf.2017.00036
    Markram, H., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell 163: 456-492.
    Marcus, D.S., et al. (2011). Informatics and data mining tools and strategies for the human connectome project. Frontiers of Neuroinformatics 5(4). https:/doi.org/10.3389/fninf.2011.00004
    Meijering, E. (2010). Neuron tracing in perspective. Cytometry A 77: 693-704.
    Milyaev, N., et al. (2012). The virtual fly brain browser and query interface. Bioinformatics 28: 411-415.
    Ng, J., et al. (2016). Genetically targeted 3D visualisation of Drosophila neurons under electron microscopy and X-ray microscopy using miniSOG. Scientific Reports 6. https://doi.org/10.1038/srep38863
    Ntziachristos, V. (2010). Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7: 603-614.
    Oh, S.W., et al. (2014). A mesoscale connectome of the mouse brain. Nature 508: 207-214.
    Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J., and Charpak, S. (2001). Two-photon microscopy in brain tissue: parameters influencing the imaging depth. Journal of Neuroscience Methods 111: 29-37.
    Otsuna, H., Shinomiya, K., and Ito, K. (2014). Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Frontiers in neural circuits 8. https://doi.org/10.3389/fncir.2014.00008
    Peng, H., Ruan, Z., Long, F., Simpson, J.H., and Myers, E.W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology 28(4): 348-353.
    Peng, H., et al. (2011). BrainAligner: 3D registration atlases of Drosophila brains. Nature Methods 8(6): 493-500.
    Peng, H., Roysam, B., and Ascoli, G.A. (2013). Automated image computing reshapes computational neuroscience. BMC Bioinformatics 14. https://doi.org/10.1186/1471-2105-14-293
    Peng, H., et al. (2015). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87(2): 252-256.
    Peng, H., et al. (2017). Automatic tracing of ultra-volumes of neuronal images. Nature Methods 14: 332-333.
    Pettersen, E.F., et al. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13): 1605-1612.
    Pfeiffer, B.D., et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105: 9715-9720.
    Pfeiffer, B.D., et al. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics 186: 735-755.
    Pool, M., Thiemann, J., Bar-Or, A., and Fournier, A.E. (2008). NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. Journal of Neuroscience Methods 168: 134-139.
    Preucil, F. (1953). Color Hue and Ink Transfer - Their relation to perfect reproduction. TAGA Proceedings, 102-110.
    Richardson, D.S., and Lichtman, J.W. (2015). Clarifying tissue clearing. Cell 162: 246-257.
    Robie, A.A., et al. (2017). Mapping the neural substrates of behavior. Cell 170: 393-406.
    Santamaria-Pang, A., Hernandez-Herrera, P., Papadakis, M., Saggau, P., and Kakadiaris, I.A. (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics 13: 297-320.
    Schindelin, J., Rueden, C.T., Hiner, M.C., and Eliceiri, K.W. (2015). The ImageJ ecosystem: an open platform for biomedical image analysis. Molecular Reproduction and Development 82(7-8): 518-529.
    Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675.
    Shih, C.T., et al. (2015). Connectomics-based analysis of information flow in the Drosophila brain. Current Biology 25(10): 1249-1258.
    Sigal, Y.M., Speer, C.M., Babcock, H.P., and Zhuang, X.W. (2015). Mapping synaptic input fields of neurons with super-resolution Imaging. Cell 163(2): 493-505.
    Small, A., and Stahlheber, S. (2014). Fluorophore localization algorithms for super-resolution microscopy. Nature Methods 11: 267-279.
    Sporns, O., Tononi, G., and Kotter, R. (2005). The human connectome: a structural description of the human brain. PLOS Computational Biology 1(4). https://doi.org/10.1371/journal.pcbi.0010042
    Spradling, A.C., et al. (1999). The Berkeley drosophila genome project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153: 135-177.
    Swanson, L.W., and Lichtman, J.W. (2016). From Cajal to connectome and beyond. Annual Review of Neuroscience 39: 197-216.
    Takemura S.Y., et al. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature 500: 175-181.
    Takemura, S.Y., et al. (2017). A connectome of a learning and memory center in the adult Drosophila brain. Elife 6. https://doi.org/10.7554/eLife.26975
    Tanimoto, T.T. (1958). An elementary mathematical theory of classification and prediction. International Business Machines Corporation.
    Van Essen, D.C., et al. (2017). The brain analysis library of spatial maps and atlases (BALSA) database. Neuroimage 144(Pt B): 270-274.
    von Philipsborn, A.C., et al. (2014). Cellular and behavioral functions of fruitless isoforms in Drosophila courtship. Current biology 24: 242-251.
    Wang, C.W., Lee, Y.C., Pradana, H., Zhou, Z., and Peng, H. (2017). Ensemble neuron tracer for 3D neuron reconstruction. Neuroinformatics 15: 185-198.
    White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 314: 1-340.
    Zhou, Z., Sorensen, S., Zeng, H., Hawrylycz, M., and Peng, H. (2015). Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures. Neuroinformatics 13: 153-166.

    QR CODE