研究生: |
黃俊榕 |
---|---|
論文名稱: |
利用EWMA管制圖監控製程變異數 |
指導教授: | 黃榮臣 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | EWMA 、變異數 、管制圖 、監控 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對製程產品的變異數,文獻上大多是監控變異數增加的部份,而忽略了變異數減少時所帶來的訊息,當製程的變異數變小時,則代表製程的改善,這時候就應該要重新設定管制圖,才能做有效的製程監控。我們將文獻上已存在的監控變異數變大的管制圖推廣到監控變異數變小以及同時監控變異數增加或減少的情形,另外,我們也提出兩種新的管制圖來與文獻上的管制圖做比較,並觀察製程在發生階梯式平移及漂移式失控時,四種管制圖的失控狀態平均連串長度的大小。此外,在變異數雙邊的監控方面,我們將監控變異數增加較有效率的管制圖與監控變異數減少較有效率的管制圖合併,合併後的管制圖能有效的監控變異數的雙邊改變。最後我們討論文獻上所提出的最佳化設計,我們建議使用此種最佳化設計前,需要先定義平滑常數的範圍,才能使之更實用。
[1] Acosta-Mejia, C. A., Pignatiello, J. J., Jr., and Rao, B. V. (1999). A Comparison of Control Charting Procedures for Monitoring Process Dispersion. IIE Transactions 31, pp. 569–579.
[2] Acosta-Mejia, C. A. (1998). Monitoring Reduction in Variability with the Range. IIE Transactions 30, pp. 515–523.
[3] Barr, D. R. and Sherrill, E. T. (1999). Mean and Variance of Truncated Normal Distributions. The American Statistician 53, pp. 357–361.
[4] Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems: Effect on Inequality of Variance in One-Way Classification. Annals of Mathematical Statistics 25, pp. 290–302.
[5] Box, G. E. P., Hunter, W., and Hunter J. (1978). Statistics for Experiments. John Wiley & Sons, New York, NY.
[6] Chang, T. C. and Gan, F. F. (1995). A Cumulative Sum Control Chart for Monitoring Process Variance. Journal of Quality Technology 27, pp. 109–119.
[7] Chen, G. M., Cheng, S. W., and Xie, H. S. (2001). Monitoring Process Mean and Variability with One EWMA Chart. Journal of Quality Technology 33, pp. 223–233.
[8] Crowder, S. V. and Hamilton, M. (1992). Average Run Lengths of EWMA Controls for Monitoring a Process Standard Deviation. Journal of Quality Technology 24, pp. 44–50.
[9] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2nd ed., John Wiley & Sons, New York, NY.
[10] Lowry, C. A., Champ, C. W., and Woodall, W. H. (1993). The Performance of Control Charts for Monitoring Process Variation. Communication in Statistics 21, pp. 409–437.
[11] MacGregor, J. F. and Harris, T. J. (1993). The Exponentially Weighted Moving Variance. Journal of Quality Technology 25, pp. 106–118.
[12] Mongomery, D. C. (2005). Introduction to Statistical Quality Control (5th ed.), John Wiley & Sons, New York, NY.
[13] Ng, C. H. and Case, K. E. (1989). Development and Evaluation of Control Charts Using Exponentially Weighted Moving Averages. Journal of Quality Technology 21, pp. 242–250.
[14] Page, E. S. (1954). Continuous Inspection Schemes. Biometrics 41, pp. 100-114.
[15] Page, E. S. (1963). Controlling the Standard Deviation by CUSUM and Warning Lines. Technometrics 5, pp. 307–315.
[16] Reynolds, M. R., Jr. and Stoumbos, Z. G. (2004). Control Charts and the Efficient Allocation of Sampling Resources. Technometrics 46, pp. 200–214.
[17] Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics 1, pp. 239–250.
[18] Shu, L. and Jiang, W. (2008). A NEW EWMA Chart for Monitoring Process Dispersion. Journal of Quality Technology, pp. 319–331.
[19] Sweet, A. L. (1986). Control Charts Using Coupled Exponentially Weighted Moving Averages. IIE Transactions 18, pp. 26–33.
[20] Tuprah, K. and Ncube, M. (1987). A Comparison of Dispersion Quality Control Charts. Sequential Analysis 6(2), pp. 155–163.
[21] Western Electric (1956). Statistical Quality Handbook, Western Electric Corporation, Indianapolis, Ind.
[22] Wortham, A. W. and Ringer, L. J. (1971). Control via Exponential Smoothing. The Logistics Review 7, pp. 33–40.