簡易檢索 / 詳目顯示

研究生: 平星磊
Ping, Hsing-Lei
論文名稱: 基於自我關注之全局及局部圖形特徵學習的新穎積體電路布局偵測
Attention-Guided Deep Glocal Shape Feature Learning for IC Layout Novelty Detection
指導教授: 林嘉文
Lin, Chia-Wen
邵皓強
Shao, Hao-Chiang
口試委員: 方邵云
Fang, Shao-Yun
張世杰
Chang, Shih-Chieh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 44
中文關鍵詞: 積體電路新穎偵測微影成像模擬自動編碼器
外文關鍵詞: Layout novelty detection, Lithography simulation, Auto-encoder
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於使用深度網路來進行微影成像預測的學習模型,事實上,要模擬微影成像過程中從最初積體電路設計到最終晶圓產出的電路之間的非線性的輪廓變換是非常困難且複雜的。這類微影模擬所採用的深度學習模型,其效果及表現通常受到成對的訓練資料所影響,每筆成對的訓練資料會由一張固定圖片大小的積體電路設計,以及其對應到的最終製程產出的拍攝影像。然而,針對不同設計的積體電路樣式,我們需要透過蒐集新晉資料分布的訓練資料來更新我們現有的預訓練模型,而蒐集製程產出的拍攝影像,是需要投入大量時間以及大量金錢去進行真實的半導體製程的。因此,我們應用深度網路的學習模型,提出了基於自我關注的全局和局部圖形的新穎分數來對積體電路設計進行新穎偵測。這種方法透過選出對於預訓練模型而言,能夠挾帶更多新穎資訊以及為模型帶來成長價值的訓練資料,亦能作為主動學習的預先挑選程序。
    基於殘差網路和分類模型上近年的新穎偵測作法,我們設計的積體電路新穎偵測模型是由兩個子網路架構所組成:一個用於為積體電路的全體佈局相似度所評分的自動編碼器,和一個用於偵測局部輪廓變換差異所使用預訓練模型中的前段編碼器。將新晉的設計和原先的訓練資料分布進行比對,來進行新穎偵測。而基於原先設計的預訓練深度網路模型,我們更透過套用的自監督學習的模塊進行微調,來讓原先基於局部的判斷的子網路可以容納更為廣範圍的資訊。且我們所提出的方法可以只透過觀測積體電路設計就能預測微影成像中輪廓變化的新穎程度,而不需要提前經過製程上需求的大量時間和金錢花費。在後續的實驗部分也能證明我的積體電路的新穎偵測算法的有效性。


    The fact that it is too complicated to model the non-linear shape distortion of the fabrication result of a designed IC pattern urges the development of learning-based pre-simulation models. Such models are usually driven by pairwise training samples, each consisting of a layout pattern and a reference contour image after one certain fabrication step.
    However, it is expensive and time-consuming to collect reference contour images of layouts for training and fine-tuning such pre-simulation models via the IC fabrication process.
    Therefore, we propose a deep learning-based layout novelty detection algorithm with a SA-Glocal (self-attention global-local) novelty score. The proposed algorithm can act as an active learning oracle, based on which users can find a reduced amount of layouts worthy enough to be fabricated for acquiring the ground-truth circuit contours of their IC products.
    Inspired by residual-based and classification-based novelty detection models,
    we also devise a layout novelty detection method that can assess the potential novelty of a layout by exploiting two subnetworks, an auto-encoder and a pretrained layout-to-SEM prediction model. The former subnetwork characterizes the global structural similarity between the given layout and training samples, and the latter can derive an attention-guided latent code depicting the local deformation.
    Through this design, the proposed method can be deployed in the absence of ground-truth circuit contours.
    Experimental results demonstrate that the proposed method can detect novel layout patterns effectively.

    1. Introduction p7 2. Related Work p12 2.1 Pre-simulation Models p12 2.2 Novelty Detection p14 2.3 Self-attention Module p18 3. Proposed Method 3.1 Overview p20 3.2 Model-assisted Annotation for Local Abnormality p21 3.3 Global-Local Shape Novelty Score p23 3.4 Layout-to-SEM Prediction-based Novelty Score p25 3.5 Auto-encoder-based Global Novelty Score p27 3.6 Attention-Guided Layout-to-SEM Prediction Model p28 4. Experiment 4.1 Dataset and Network Configuration p31 4.2 Layout Novelty Detection p34 5. Conclusion p38

    [1] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Young, “Gan-opc: Mask optimization with lithography-guided generative adversarialnets,”IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,no. 10, pp. 2822–2834, 2019.
    [2] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “Lithogan: End-to-endlithography modeling with generative adversarial networks,” inProc.ACM/IEEE Design Autom. Conf., 2019, pp. 1–6.
    [3] H.-C. Shao, C.-Y. Peng, J.-R. Wu, C.-W. Lin, S.-Y. Fang, P.-Y. Tsai,and Y.-H. Liu, “From ic layout to die photo: A cnn-based data-drivenapproach,”IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,2020.
    [4] B. Liu, Y. Xiao, L. Cao, Z. Hao, and F. Deng, “Svdd-based outlierdetection on uncertain data,”Knowledge and Inf. Syst., vol. 34, no. 3,pp. 597–618, 2013.
    [5] G. R. Terrell and D. W. Scott, “Variable kernel density estimation,”Annals of Statistics, pp. 1236–1265, 1992.39
    [6] N. Japkowicz, C. Myers, M. Glucket al., “A novelty detection approachto classification,” inProc. IJCAI, vol. 1. Citeseer, 1995, pp. 518–523.
    [7] D. Miljkovi ́c, “Review of novelty detection methods,” inPorc. Int. Con-vention MIPRO. IEEE, 2010, pp. 593–598.
    [8] S. Calderara, U. Heinemann, A. Prati, R. Cucchiara, and N. Tishby,“Detecting anomalies in people’s trajectories using spectral graph anal-ysis,”Comput. Vis. Image Understand., vol. 115, no. 8, pp. 1099–1111,2011.
    [9] M. Mathieu, “Masked autoencoder for distribution estimation,” 2015.
    [10] T. Schlegl, P. Seeb ̈ock, S. M. Waldstein, U. Schmidt-Erfurth, andG. Langs, “Unsupervised anomaly detection with generative adversarialnetworks to guide marker discovery,” inProc. Int. Conf. Inf. Process.Med. Imag.Springer, 2017, pp. 146–157.
    [11] H. Fan, F. Zhang, and Z. Li, “Anomalydae: Dual autoencoder foranomaly detection on attributed networks,” inProc. IEEE Int. Conf.Acoustics Speech Signal Process.IEEE, 2020, pp. 5685–5689.40
    [12] X. Wang, B. Jin, Y. Du, P. Cui, and Y. Yang, “One-class graph neuralnetworks for anomaly detection in attributed networks,”arXiv preprintarXiv:2002.09594, 2020.
    [13] J. An and S. Cho, “Variational autoencoder based anomaly detectionusing reconstruction probability,”Special Lecture on IE, vol. 2, no. 1,pp. 1–18, 2015.
    [14] M. Kliger and S. Fleishman, “Novelty detection with gan,”arXivpreprint arXiv:1802.10560, 2018.
    [15] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space au-toregression for novelty detection,” inProc. IEEE/CVF Conf. Comput.Vis. Pattern Recognit., 2019, pp. 481–490.
    [16] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “Adversariallylearned one-class classifier for novelty detection,” inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit., 2018, pp. 3379–3388.
    [17] P. Perera, R. Nallapati, and B. Xiang, “Ocgan: One-class novelty de-tection using gans with constrained latent representations,” inProc.IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2898–2906.41
    [18] S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, “Generativeprobabilistic novelty detection with adversarial autoencoders,”arXivpreprint arXiv:1807.02588, 2018.
    [19] Y. L. Sung, S.-H. Hsieh, S.-C. Pei, and C.-S. Lu, “Difference-seekinggenerative adversarial network–unseen sample generation,” inProc. Int.Conf. Learn. Rep., 2019.
    [20] I. Golan and R. El-Yaniv, “Deep anomaly detection using geometrictransformations,”arXiv preprint arXiv:1805.10917, 2018.
    [21] L. Bergman and Y. Hoshen, “Classification-based anomaly detection forgeneral data,”arXiv preprint arXiv:2005.02359, 2020.
    [22] J. Tack, S. Mo, J. Jeong, and J. Shin, “Csi: Novelty detection via con-trastive learning on distributionally shifted instances,”arXiv preprintarXiv:2007.08176, 2020.
    [23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,L. Kaiser, and I. Polosukhin, “Attention is all you need,”arXiv preprintarXiv:1706.03762, 2017.42
    [24] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attentiongenerative adversarial networks,” inInternational conference on ma-chine learning. PMLR, 2019, pp. 7354–7363.
    [25] T. Bachlechner, B. P. Majumder, H. H. Mao, G. W. Cottrell, andJ. McAuley, “Rezero is all you need: Fast convergence at large depth,”arXiv preprint arXiv:2003.04887, 2020.
    [26] S. De and S. L. Smith, “Batch normalization biases residual blockstowards the identity function in deep networks,”arXiv preprintarXiv:2002.10444, 2020.
    [27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gellyet al.,“An image is worth 16x16 words: Transformers for image recognition atscale,”arXiv preprint arXiv:2010.11929, 2020.
    [28] Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J. Liang, “Fine-tuning convolutional neural networks for biomedical image analysis: ac-tively and incrementally,” inProc. IEEE Conf. Comput. Vis. PatternRecognit., 2017, pp. 7340–7351.43
    [29] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu, “Improving one-classsvm for anomaly detection,” inProc. Int. Conf. Mach. Learn. Cybern.,vol. 5, 2003, pp. 3077–3081.
    [30] D. M. Tax and R. P. Duin, “Support vector data description,”Mach.Learn., vol. 54, no. 1, pp. 45–66, 2004.
    [31] W.-C. Chang, C.-P. Lee, and C.-J. Lin, “A revisit to support vector datadescription,”Dept. Comput. Sci., Nat. Taiwan Univ., Taipei, Taiwan,Tech. Rep, 2013.

    QR CODE