簡易檢索 / 詳目顯示

研究生: 林源益
Yuan-Yi Lin
論文名稱: 應用同步代數重建法於BGA檢測之研究
The Study of Using Simultaneous Algebraic Reconstruction Technique on BGA Inspection
指導教授: 林士傑
Shin-Chieh Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 87
中文關鍵詞: X射線電腦斷層掃瞄法代數重建法BGA檢測
外文關鍵詞: X-Ray Computer Tomography, Simultaneous Algebraic Reconstruction Technique, BGA inspection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今針對高度競爭的電子產業,製程中的線上檢測不僅可以提高產品的良率、發現製程上的缺失,更能減少在不良品上加工的浪費。然而,傳統的二維自動光學檢測(Automatic Optical Inspection)設備,通常僅能檢測物件表面的缺陷,而在製程上所產生的內部瑕疵或隱藏於元件後的缺陷,利用具有穿透能力的X射線便可為此問題提供一個可能的解決方案。此時,利用X射線電腦斷層掃瞄法(X-Ray Computer Tomography)來進行各物件三維結構的影像重建,最後藉由所得到之立體影像來判斷生產線上的製程缺陷。在本研究中,使用同步代數重建法(Simultaneous Algebraic Reconstruction Technique,SART)針對BGA錫球進行檢測,同時探討影響SART的參數,校正出適合之參數重建三維空間的BGA錫球結構,並由所得到的影像來分析BGA是否含有內部瑕疵或缺陷。


    On-line optical inspection is become popular, because it can not only improve the product quality but also identify the failure of the process immediately. And hence, not only the production yield can be improved, but also the waste due to failure can be reduced.
    However, traditional optical inspection machine is limited to detect defects appeared on the surface of the product. In order to detect defects beneath surface, X-Ray image is a powerful tool to apply. Computed tomography can provide the size and shape at any desired section about the defect inside a product while traditional X-Ray image can only provide vague information about the defect.
    In this dissertation, Simultaneous Algebraic Reconstruction Technique (SART) for computer tomography was adopted to inspect BGA defects. In our simulation study, the effects of various parameters on reconstructed images are also studied. As a result, it was found that the SART with proper parameters used is able to rebuild the 3-D BGA structure properly and the inside flaw can be detected.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 3 第二章 文獻回顧 7 2-1 X射線的特性 8 2-2 利用X射線進行物件剖面之重建方法 10 2-3 電腦斷層掃描演算法 12 2-4影響代數重建法之要素 18 第三章 研究方法與步驟 26 3-1重建方法的選擇 27 3-2 系統參數設定 27 3-3 X-Ray投影模擬 31 3-4 SART重建參數設定 33 3-5 標準測試影像與分析指標 35 第四章 模擬結果和討論 47 4-1 SART參數設定 48 4-2 X-Ray放射源軌跡對重建結果之影響 52 第五章 結論與未來展望 82 5-1結論 82 5-2未來展望 84 參考文獻 85

    [1]Intel’s 1999 Packaging Databook, Intel Corporation, New York, 2000.

    [2]AMD Functional Data Sheet, 754 Pin Package, Advanced Micro Devices, New York, 2004.

    [3]宋維泰,「封裝技術探索」,大椽股份有限公司,台北市,2005。

    [4]T.D. Moore, “Three-Dimensional X-Ray Laminography as A Tool for Detection and Characterization of BGA Package Defects,” IEEE, Transactions on Components and Packaging Technologies, Vol. 25, No. 2, pp. 224-229, June 2002.

    [5]S. Krimmel, J. Stephan, and J. Baumann, “3D Computed Tomography Using A Microfocus X-ray Source: Analysis of Artifact Formation in The Reconstructed Images Using Simulated as well as Experimental Projection Data,” Nuclear Instruments and Methods in Physics Research, Section A-542, pp. 399-407, February 2005.

    [6]G.T. Herman, Phys. Med. Biol. 24 (1) (1979) 81, 1979.

    [7]P. Hammersberg, M. Mangard, J. X-ray Sci. Technol. 8 75, 1998.

    [8]Fu Jian, Lu Hongnian,“Beam-Hardening Correction Method Based on Original Sinogram for X-CT,” Nuclear Instruments and Methods in Physics Research A556, pp. 379-385, November 2005.

    [9]Avinash C. Kak and M. Slaney, ”Principles of Computerized Tomographic Imaging,” IEEE Press, 1988.

    [10]S. Gondrom, and M. Maisl, “3D Reconstructions of Micro-System Using X-Ray Tomographic Methods,” Fraunhofer Development Center X-ray Technology, Saarbruecken, Germany, 2004.

    [11]Gabor T. Herman, “Image Reconstruction From Projections:The Fundamental of Computed Tomography,” Academic Press, 1980.

    [12]Yair Censor,“Finite Series-Expansion Reconstruction Methods,” Proceedings of IEEE, Vol. 71, No. 3, March 1983.

    [13]Y.J. Roh, and H.S. Cho, “Implementation of Uniform and Simultaneous ART for 3D Reconstruction in An X-Ray Imaging system,” IEE Image Signal Process,Vol. 151, 2004.

    [14]S. Kaczmarz, “Angenaherte Auflosung Von Systemen Linearer Gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp. 355-357, 1937.

    [15]K. Tanabe, “Projection Method for Solving a Singular System,” Numer. Math., Vol. 17, pp. 203-214, 1971.

    [16]A.H. Andersen, and A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of The ART Algorithm,” Ultrasonic Imaging, Vol. 6, pp. 81-94, 1984.

    [17]Y.J. Roh, and H.S. Cho, “ A Uniform and Simultaneous Algebraic Reconstruction Technique for X-Ray Digital Tomosynthesis,” Materials Evalution, Vol. 60, No 11, pp. 1350-1357, 2002.

    [18]Wenkai Lu, Fang-Fang Yin, “Adaptive Algebraic Reconstruction Technique,” Medical Physics, Vol. 31, No. 12, December 2004.

    [19]Klaus Mueller, Roni Yagel, and J. Fredrick Cornhill, “The Weighted-Distance Scheme: A Globally Optimizing Projection Ordering Method For ART,” IEEE Transactions On Medical Imaging, Vol. 16, No. 2, 1997.

    [20]陳宏吉,“應用X射線薄層描繪法於PCB與BGA檢測之研究,”國立清華大學碩士論文, 2007.

    [21]Huaiqun Guan and Richard Gordon, “A Projection Access Order For Speedy Convergence of ART (algebraic reconstruction technique):A Multilevel Scheme for Computed Tomography,” IPO Publishing Ltd, 1994.

    [22]Klaus Mueller, Roni Yagel, and John J. Wheller, “Anti-Aliased Three-Dimensional Cone-Beam Reconstruction of Low-Contrast Objects with Algebraic Methods,” IEEE Transactions On Medical Imaging, Vol. 18, No. 6, June 1999.

    [23]呂信億,“應用X射線電腦斷層掃描於BGA檢測之最佳化,”國立清華大學碩士論文, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE