簡易檢索 / 詳目顯示

研究生: 吳孟勳
Wu, Meng-Hsun
論文名稱: 食鹽應用於輻射場之劑量特性研究
Dosimetric Characteristic Study of Common Salt Applied in Radiation Fields
指導教授: 許靖涵
Hsu, Ching-Han
許芳裕
Hsu, Fang-Yuh
口試委員: 趙自強
Chao, Tsi-Chain
游澄清
Yu, Cheng-Ching
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: 氯化鈉碘鹽熱發光劑量計中子活化中子劑量
外文關鍵詞: Sodium chloride, NaCl, Thermoluminescent dosimeter, Neutron activation, Neutron dose
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現行採用之熱發光劑量計(如LiF)或以晶片活化評估中子劑量之材料(如金箔),皆較昂貴且含Li材料因具管制性而不易取得,因此使用便宜且易取得之材料-食鹽,評估其特性及取代現行材料之可行性為最近被常討論的議題之一。本研究目的分為兩個部份,ㄧ為探討食鹽於光子輻射場中之熱發光特性及劑量監測之可行性,二為探討食鹽藉中子活化分析評估中子劑量之可行性。本研究使用市售碘鹽進行取樣後置於自製照射管容器,分別於光子及中子輻射場進行劑量特性研究測試。碘鹽於光子輻射場有較多影響因素,如粒徑大小影響輻射敏感度、消光速率顯著造成低劑量範圍有較大統計誤差,故碘鹽較適合度量中、高劑量,且使用上須考慮碘鹽受濕度之影響。碘鹽於中子輻射場評估之中子通量率經校正後可與金箔不相上下,且有較小之誤差變動,相較於光子劑量評估,碘鹽較適合用於評估中子劑量。


    Salt is more easily available and low-cost compared with commercial thermoluminescent dosimeters (TLDs) and activation gold foils. Recently, feasibility study on the replacement of commonly used TLD materials with salt, and evaluation of salt’s dose response properties become the popular issues nowadays. Therefore, the purpose of this study is divided into two parts: one is to investigate the thermoluminescent properties of salt, the other is to evaluate the feasibility of dose monitoring in photon and neutron radiation fields respectively.
    In this study, self-made capsules filled up the commercially available iodized salt in Taiwan were irradiated to investigate the dosimetric characteristics in photon and neutron radiation fields respectively. Iodized salt has several influencing factors to dose reponse in the photon radiation field. For example, the particle size affects the radiation sensitivity and the fading rate significantly causes a large statistical error in the low dose range. Therefore, the iodized salt is more suitable for measuring doses in medium and high levels, and must consider the influence of humidity to dose response. On the other hand, the neutron flux rate estimated by the iodized salt in the neutron radiation fields is calibrated to be comparable to that of the gold foil, and has a small error deviation. Compared with the application of photon dose evaluation, the iodized salt is more suitable for evaluating the neutron dose.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 熱發光材料與應用 3 1.3 輻射場及其應用 7 1.4 文獻回顧 11 1.4.1 熱發光 11 1.4.2 中子活化分析 17 1.5 研究目的 20 第二章 材料與方法 22 2.1 食鹽 22 2.2 垂直照射管 27 2.3 蒙地卡羅模擬 28 2.3.1 MCNP軟體 28 2.3.2 能量依存性修正 29 2.3.3 能量鑑別 30 2.4 演算法建立 32 2.5 熱發光基本特性之實驗設計 33 2.5.1 輝光曲線 33 2.5.2 回火條件 33 2.5.3 背景訊號累積 35 2.6 光子照射實驗設計 36 2.6.1 消光 37 2.6.2 劑量校正 37 2.6.3 均勻性評估 38 2.7 中子照射實驗設計 40 2.7.1 中子照射參數 40 2.7.2 偵檢器 43 2.7.3 中子劑量評估 47 第三章 結果與討論 50 3.1 熱發光基本特性 50 3.1.1 輝光曲線 50 3.1.2 回火條件 53 3.1.3 背景訊號累積 61 3.2 蒙地卡羅模擬 64 3.2.1 能量依存性修正 64 3.2.2 能量鑑別 65 3.3 光子照射 66 3.3.1 消光 66 3.3.2 劑量校正 68 3.3.3 均勻性評估 75 3.4 演算法 76 3.5 中子照射 78 第四章 結論 84 參考文獻 86 附錄ㄧ HPGe效率校正數據 90 附錄二 光子能量依存性及能量鑑別之詳細數據 91 附錄三 劑量反應曲線詳細數據 92 附錄四 演算法於各個實驗之詳細數據 93

    [1] 姚潔宜, "X 光的奇妙世界," 國家奈米元件實驗室奈米通訊, vol. 22, no. 1, pp. 34-38, 2015.
    [2] J. A. Ademola, "Luminescence properties of common salt (NaCl) available in Nigeria for use as accident dosimeter in radiological emergency situation," Journal of Radiation Research and Applied Sciences, vol. 10, no. 2, pp. 117-121, 2017.
    [3] S. Druzhyna et al., "Thermoluminescence characteristics of Israeli household salts for retrospective dosimetry in radiological events," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 377, pp. 67-76, 2016.
    [4] S. W. McKeever, Thermoluminescence of solids. Cambridge University Press, 1988.
    [5] D. Ekendahl et al., "Dosimetry With Salt In Mixed Radiation Fields Of Photons And Neutrons," Radiation protection dosimetry, vol. 178, no. 3, pp. 329-332, 2017.
    [6] H. Gobrecht et al., "Determination of chlorine and sodium in selenium by non-destructive neutron activation analysis," The International Journal of Applied Radiation and Isotopes, vol. 16, no. 11, pp. 655-659, 1965.
    [7] 許彬杰, 翁寶山, 實用固體熱發光劑量計測定術. 合記書局出版社, 2000.
    [8] T. E. Johnson and B. K. Birky, Health physics and radiological health. Lippincott Williams & Wilkins, 2012.
    [9] 游離輻射防護安全標準, 民94年12月30日.
    [10] 行政院原子能委員會, "輻射與環境," 行政院原子能委員會核能研究所, 民86年12月.
    [11] 葉宗洸, "身在輻中要知輻," 行政院原子能委員會, 民100年7月第1版.
    [12] F. H. Attix, Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008.
    [13] J. R. Lamarsh and A. J. Baratta, Introduction to nuclear engineering. Prentice Hall Upper Saddle River, NJ, 2001.
    [14] M. D. Glascock, "Neutron Activation Analysis (NAA): Applications in Archaeology," in Encyclopedia of Global Archaeology: Springer, 2014, pp. 5239-5247.
    [15] B. Kogo et al., "Neutron activation analysis of soil samples from different parts of Abuja Metropolis," Middle-East Journal of Scientific Research, vol. 4, no. 4, pp. 254-262, 2009.
    [16] R. Coleman, "THE APPLICATION OF NEUTRON ACTIVATION ANALYSIS TO FORENSIC SCIENCE," Atomic Weapons Research Establishment, Aldermaston, Eng.1967.
    [17] K.-H. Beckurts and K. Wirtz, Neutron physics. Springer Science & Business Media, 2013.
    [18] K. Becker, "Solid state dosimetry," CRC, Ohio, 141, 1973.
    [19] R. Boyle, "Register or the Roy.," p. 213, 1663.
    [20] M.-A. Seeley, "Thermoluminescent dating in its application to archaeology: a review," Journal of Archaeological Science, vol. 2, no. 1, pp. 17-43, 1975.
    [21] C. F. Du Fay, "Hist.de l'Acad.," Roy. de Sci.de Paris, p. 347, 1735.
    [22] A. S. Herschel, Nature, pp. 60, 29, 1889.
    [23] K. Becker, "On the discovery of thermoluminescence," Health physics, vol. 27, no. 3, p. 321, 1974.
    [24] M. Curie, Radio-active substances. Chemical News Office, 1904.
    [25] S. C. B. Lind, D.C., J. Franklin Inst., vol. 196, p. 357, 1923.
    [26] F. G. Wick, "A spectroscopic study of the Cathodo-Luminescence of Fluorite," Physical Review, vol. 24, no. 3, p. 272, 1924.
    [27] F. G. Wick and J. M. Gleason, "The Effect of Heat Treatment Upon the Cathodo-Phosphorescence of Fluorite," JOSA, vol. 9, no. 6, pp. 639-648, 1924.
    [28] T. Lyman, "The Transparency of the Air Between 1100 and 1300A," Physical Review, vol. 48, no. 2, p. 149, 1935.
    [29] J. Chadwick, "Bakerian lecture.―The neutron," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 142, no. 846, pp. 1-25, 1933.
    [30] J. Chadwick, "Possible Existence of a Neutron," Nature, vol. 129, no. 3252, pp. 312-312, 1932/02/01 1932.
    [31] G. F. Knoll, Radiation detection and measurement. John Wiley & Sons, 2010.
    [32] 行政院原子能委員會, "全國輻射工作人員劑量資料統計年報(民國106年度)," 行政院原子能委員會民106年.
    [33] 游離輻射防護法, 民91年01月30日.
    [34] 財團法人中華民國輻射防護協會. (民106年08月15日). 輻防簡訊第146期.
    [35] 行政院原子能委員會, "第十ㄧ章 環境輻射監測," 行政院原子能委員會.
    [36] 維基百科,自由的百科全書. (民108年5月). 食鹽.
    [37] 交通部中央氣象局. (民100年1月). 相對濕度.
    [38] R. Gartia, B. A. Sharma, and U. Ranita, "Thermoluminescence response of some common brands of iodised salt," 2004.
    [39] N. Spooner et al., "Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry," Radiation Measurements, vol. 46, no. 12, pp. 1856-1861, 2011.
    [40] Ü. R. Yüce and B. Engin, "Effect of particle size on the thermoluminescence dosimetric properties of household salt," Radiation Measurements, vol. 102, pp. 1-9, 2017.
    [41] M. Chougaonkar et al., "Performance characteristics of newly modified CaSO4: Dy based indigenous thermoluminescent dosimeters for environmental radiation monitoring," Journal of Nuclear Science and Technology, vol. 45, no. sup5, pp. 610-613, 2008.
    [42] F. Takahashi, A. Endo, and Y. Yamaguchi, "Examination for neutron dose assessment method from induced sodium-24 in human body in criticality accidents," Journal of nuclear science and technology, vol. 42, no. 4, pp. 378-383, 2005.
    [43] J.-H. R. Choi, "Development and characterization of an epithermal beam for boron neutron capture therapy at the MITR-II research reactor," Massachusetts Institute of Technology, Department of Nuclear Engineering, 1991.
    [44] R. D. Rogus, O. K. Harling, and J. C. Yanch, "Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR‐II research reactor," Medical physics, vol. 21, no. 10, pp. 1611-1625, 1994.
    [45] A. Ranjbar, S. Durrani, and K. Randle, "Electron spin resonance and thermoluminescence in powder form of clear fused quartz: effects of grinding," Radiation measurements, vol. 30, no. 1, pp. 73-81, 1999.
    [46] M. H. Abdel-wahed et al., "Thermoluminescence characteristics of NaCl from Different Origins."
    [47] K. J. Thomsen, L. Bøtter-Jensen, and A. S. Murray, "Household and workplace chemicals as retrospective luminescence dosemeters," Radiation protection dosimetry, vol. 101, no. 1-4, pp. 515-518, 2002.
    [48] G. S. Polymeris et al., "Dissolution and subsequent re-crystallization as zeroing mechanism, thermal properties and component resolved dose response of salt (NaCl) for retrospective dosimetry," Applied Radiation and Isotopes, vol. 69, no. 9, pp. 1255-1262, 2011.
    [49] C. Bernhardsson et al., "Household salt as a retrospective dosemeter using optically stimulated luminescence," Radiation and environmental biophysics, vol. 48, no. 1, pp. 21-28, 2009.
    [50] M. Christiansson, Household salt as an emergency radiation dosemeter for retrospective dose assessments using optically stimulated luminescence (no. 27). Lund University, 2014.
    [51] Y.-H. Liu et al., "Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 598, no. 3, pp. 764-773, 2009.
    [52] 張瑜珊, "清華大學開放式水池反應器之超熱中子束應用於硼中子捕獲治療之混合輻射場劑量研究," 清華大學生醫工程與環境科學系學位論文, pp. 1-62, 2006.
    [53] Nuclear Data Center at KAERI.

    QR CODE