簡易檢索 / 詳目顯示

研究生: 林霞蔚
Lin, Xia-Wei
論文名稱: 二硫化鉬上的缺陷的局部電子和結構性質
Local electronic and structural properties of defects in molybdenum disulfide
指導教授: 霍夫曼
Hoffmann, Germar Joachim
口試委員: 唐述中
羅榮立
簡紋濱
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 64
中文關鍵詞: 二硫化鉬缺陷電子性質
外文關鍵詞: molybdenum disulfide, defects, electronic properties
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維(2D)材料因其獨特的性質和在電子學中的潛在應用而成為納米材料科學家們關注的焦點。二維材料的有趣表面和電子特性已被廣泛研究並應用於各種器件。過渡金屬二硫化物 材料(TMD)最近在二維材料中引起了極大的興趣,二維材料由夾在兩個硫屬元素原子之間的過渡金屬原子組成。
    我們研究的樣品是高度取向的熱解石墨(HOPG)上的二硫化鉬。來自杜鹤芸博士(NTU)並採用化學氣相沉積(CVD)方法製備。根據以前的研究結果,二硫化鉬中的硫空位有助於增強HER催化活性。在這裡,我們觀察到二硫化鉬具有特徵偏差依賴性的不同類型的結構缺陷。論文中將展示不同層上的微分電導(I / V曲線)的測量。除此之外,我們還採用STM來研究原子影像,二硫化鉬的大面積STM圖像,晶界和其他表徵。


    Two-dimensional (2D) materials have become the focus of scientists working on nanomaterials because of its unique properties and potential applications in electronics. The interesting surface and electronic properties of 2D materials have been widely studied and applied to variety of devices. Transition metal dichalcogeniades materials (TMD) currently attract much interest recently in 2D materials which consist of transition-metal atoms sandwiched between two chalcogen atoms.
    The sample we studied is Molybdenum disulfide grown on highly oriented pyrolytic graphite (HOPG). It's from Dr.Du He-yun (NTU) and was directly grown on a graphite substrate with chemical vapor deposition (CVD) method. According to previous work, sulfur vacancies in MoS2 contribute significantly to the enhancement of hydrogen evolution reaction (HER) catalytic activity. Here, we observed different types of structural defects with characteristic bias dependences. The measurement of the differential conductance (I/V curves) on different layers of MoS2 will be presented in the thesis. Besides that, we also employed STM to investigate the atomic resolution, large area STM images of MoS2 grain boundaries and other characterization.

    1 Introduction 3 2 Theory 5 2.1 Scanning Tunneling Microscopy . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Quantum tunneling . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Scanning Tunneling Spectroscopy . . . . . . . . . . . . . . . . . . . 7 3 Instrument 8 3.1 Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Rotary pump . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.2 Turbomolecular pump . . . . . . . . . . . . . . . . . . . . . 11 3.2.3 Ion pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Bakeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Residual Gas Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Cooling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Sample heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 STM Repair 18 4.1 Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Tip holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Sample holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 24 4.3.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Contact Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.1 Problem description of sample stage . . . . . . . . . . . . . . 25 4.4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.3 Problem description of tip stage . . . . . . . . . . . . . . . . 26 4.4.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5 Z-shift control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 27 4.5.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Literature Review 31 5.1 Di_erent types of defects on MoS2 surface . . . . . . . . . . . . . . 31 5.2 Point defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Experiment Result 40 6.1 Large scans of MoS2 . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2 Bias e_ect of large scanning area . . . . . . . . . . . . . . . . . . . 44 6.3 Atomic resolution of MoS2 . . . . . . . . . . . . . . . . . . . . . . . 47 6.4 Variety of defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.5 Bias e_ect of defects under di_erent voltages . . . . . . . . . . . . . 55 6.6 Bandgap of di_erent layers of MoS2 . . . . . . . . . . . . . . . . . 56 7 Conclusion 59 Reference 61

    [1] Ibrahim Saana Amiinu, Zonghua Pu, Xiaobo Liu, Kwadwo Asare Owusu,
    Hellen Gabriela Rivera Monestel, Felix Ofori Boakye, Haining Zhang, and
    Shichun Mu. Multifunctional mo{n/c@ mos2 electrocatalysts for her, oer,
    orr, and zn{air batteries. Advanced Functional Materials, 27(44):1702300,
    2017.
    [2] Yi Shi, Yue Zhou, Dong-Rui Yang, Wei-Xuan Xu, Chen Wang, Feng-Bin
    Wang, Jing-Juan Xu, Xing-Hua Xia, and Hong-Yuan Chen. Energy level engineering
    of mos2 by transition-metal doping for accelerating hydrogen evolution
    reaction. Journal of the American Chemical Society, 139(43):15479{
    15485, 2017.
    [3] https://en.wikipedia.org/wiki/transitionmetaldichalcogenidemonolayers:
    [4] M-H Whangbo, J Ren, SN Magonov, H Bengel, BA Parkinson, and A Suna. On
    the correlation between the scanning tunneling microscopy image imperfections
    and point defects of layered chalcogenides 2h? mx2 (m= mo, w; x= s, se). Surface
    science, 326(3):311{326, 1995.
    [5] Damien Voiry, Maryam Salehi, Rafael Silva, Takeshi Fujita, Mingwei Chen,
    Tewodros Asefa, Vivek B Shenoy, Goki Eda, and Manish Chhowalla. Conducting
    mos2 nanosheets as catalysts for hydrogen evolution reaction. Nano letters,
    13(12):6222{6227, 2013.
    [6] Damien Voiry, Jieun Yang, and Manish Chhowalla. Recent strategies for improving
    the catalytic activity of 2d tmd nanosheets toward the hydrogen evolution reaction.
    Advanced Materials, 28(29):6197{6206, 2016.
    [7] Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, i V Giacometti,
    and A Kis. Single-layer mos 2 transistors. Nature nanotechnology, 6(3):147, 2011.
    [8] Damien Voiry, Hisato Yamaguchi, Junwen Li, Rafael Silva, Diego CB Alves,
    Takeshi Fujita, Mingwei Chen, Tewodros Asefa, Vivek B Shenoy, Goki Eda, et al.
    Enhanced catalytic activity in strained chemically exfoliated ws 2 nanosheets for
    hydrogen evolution. Nature materials, 12(9):850, 2013.
    [9] https://en.wikipedia.org/wiki/quantumtunnelling:
    [10] http://highscope.ch.ntu.edu.tw/wordpress/?p=22563.
    [11] https://en.wikipedia.org/wiki/rotaryvanepump:
    [12] https://en.wikipedia.org/wiki/turbomolecularpump:
    [13] https://en.wikipedia.org/wiki/ionpump(physics):
    [14] RT Brockenbrough and JW Lyding. Inertial tip translator for a scanning tunneling
    microscope. Review of scienti c instruments, 64(8):2225{2228, 1993.
    [15] Ra k Addou, Luigi Colombo, and Robert M Wallace. Surface defects on natural
    mos2. ACS applied materials & interfaces, 7(22):11921{11929, 2015.
    [16] C Gonzalez, B Biel, and Yannick J Dappe. Theoretical characterisation of point
    defects on a mos2 monolayer by scanning tunnelling microscopy. Nanotechnology,
    27(10):105702, 2016.
    [17] Baptiste Hildebrand, Clement Didiot, Anna Maria Novello, Gael Monney, Alessandro
    Scarfato, Alberto Ubaldini, Helmuth Berger, DR Bowler, Christoph Renner,
    and Philipp Aebi. Doping nature of native defects in 1 t- tise 2. Physical review
    letters, 112(19):197001, 2014.
    [18] Xiaolong Liu, Itamar Balla, Hadallia Bergeron, and Mark C Hersam. Point defects
    and grain boundaries in rotationally commensurate mos2 on epitaxial graphene.
    The Journal of Physical Chemistry C, 120(37):20798{20805, 2016.
    [19] Han Liu, Adam T Neal, and Peide D Ye. Channel length scaling of mos2 mosfets.
    ACS nano, 6(10):8563{8569, 2012.
    [20] Ph Ebert. Nano-scale properties of defects in compound semiconductor surfaces.
    Surface science reports, 33(4-8):121{303, 1999.
    [21] Haotian Wang, Zhiyi Lu, Shicheng Xu, Desheng Kong, Judy J Cha, Guangyuan
    Zheng, Po-Chun Hsu, Kai Yan, David Bradshaw, Fritz B Prinz, et al. Electrochemical
    tuning of vertically aligned mos2 nano lms and its application in improving
    hydrogen evolution reaction. Proceedings of the National Academy of Sciences,
    110(49):19701{19706, 2013.
    [22] Ida Delac Marion, Davor Capeta, Borna Pielic, Fabio Faraguna, Aurelio Gallardo,
    Pablo Pou, Blanca Biel, Natasa Vujicic, and Marko Kralj. Atomic-scale defects and
    electronic properties of a transferred synthesized mos2 monolayer. Nanotechnology,
    29(30):305703, 2018.
    [23] Bevin Huang, Genevieve Clark, Efren Navarro-Moratalla, Dahlia R Klein, Ran
    Cheng, Kyle L Seyler, Ding Zhong, Emma Schmidgall, Michael A McGuire,
    David H Cobden, et al. Layer-dependent ferromagnetism in a van der waals crystal
    down to the monolayer limit. Nature, 546(7657):270, 2017.
    [24] Ting Cao, Gang Wang, Wenpeng Han, Huiqi Ye, Chuanrui Zhu, Junren Shi, Qian
    Niu, Pingheng Tan, EngeWang, Baoli Liu, et al. Valley-selective circular dichroism
    of monolayer molybdenum disulphide. Nature communications, 3:887, 2012.
    [25] E Pehlke and W Schattke. The e ect of frenkel defects on the electronic structure
    of 1t- tise 2. Zeitschrift fur Physik B Condensed Matter, 66(1):31{37, 1987.
    [26] Akihiro Inoue, Takahiro Komori, and Ken-ichi Shudo. Atomic-scale structures
    and electronic states of defects on ar+-ion irradiated mos2. Journal of Electron
    Spectroscopy and Related Phenomena, 189:11{18, 2013.
    [27] Naohisa Sengoku and Keiichi Ogawa. Investigations of electronic structures of
    defects introduced by ar ion bombardments on mos 2 by scanning tunneling microscopy.
    Japanese journal of applied physics, 34(6S):3363, 1995.
    [28] SN Magonov, H-J Cantow, and M-H Whangbo. On the nature of nanometer-scale
    ring structures in the scanning tunneling microscopy images of tungsten diselenide
    wse2. Surface science, 318(1-2):L1175{L1180, 1994.
    [29] Fanny Hiebel, Pierre Mallet, Laurence Magaud, and J-Y Veuillen. Atomic and
    electronic structure of monolayer graphene on 6 h-sic (000 1)(3 3): A scanning
    tunneling microscopy study. Physical Review B, 80(23):235429, 2009.
    [30] Jiagui Feng, Sean R Wagner, and Pengpeng Zhang. Interfacial coupling and electronic
    structure of two-dimensional silicon grown on the ag (111) surface at high
    temperature. Scienti c reports, 5:10310, 2015.
    [31] Daniel J Trainer, Aleksei V Putilov, Cinzia Di Giorgio, Timo Saari, Baokai Wang,
    Mattheus Wolak, Ravini U Chandrasena, Christopher Lane, Tay-Rong Chang,
    Horng-Tay Jeng, et al. Inter-layer coupling induced valence band edge shift in
    mono-to few-layer mos 2. Scienti c reports, 7:40559, 2017.
    [32] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen,
    Lain-Jong Li, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen, et al.
    Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature
    communications, 6:6298, 2015.
    [33] Jinhua Hong, Zhixin Hu, Matt Probert, Kun Li, Danhui Lv, Xinan Yang, Lin
    Gu, Nannan Mao, Qingliang Feng, Liming Xie, et al. Exploring atomic defects in
    molybdenum disulphide monolayers. Nature communications, 6:6293, 2015.
    [34] H Narita, A Kimura, M Taniguchi, M Nakatake, T Xie, S Qiao, H Namatame,
    S Yang, L Zhang, and EG Wang. Tip-induced band bending e ect and local electronic
    structure of al nanoclusters on si (111). Physical Review B, 78(11):115309,
    2008.
    [35] Mark A Lukowski, Andrew S Daniel, Fei Meng, Audrey Forticaux, Linsen Li, and
    Song Jin. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic
    mos2 nanosheets. Journal of the American Chemical Society, 135(28):10274{
    10277, 2013.

    QR CODE