研究生: |
蔡善合 Tsai, Shan-Ho |
---|---|
論文名稱: |
不同奈米級導電碳材料在高能量密度軟包鋰離子電池的研究與應用 Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
裘性天
Chiu, Hsin-Tien 劉佳兒 Liu, Chia-Erh 許君漢 Hsu, Chun-Han 劉奕宏 Liu, Yi-Hung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 鋰離子電池 、奈米碳管 、高能量密度 、導電添加劑 |
外文關鍵詞: | Lithium ion battery, Carbon nano tube, high energy density, conductive additive |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池(LIB)因具有高能量密度、重量輕以及可重複充電的特性而被廣泛的應用在可攜式電子產品的電源中。近年來,電池為了達到更高的容量及能量密度的需求,鋰鎳鈷錳(三元)金屬氧化物,LiNixCoyMn1-x-yO2 (LNCM)大量被應用在鋰離子電池的正極活性物質,而這類活性物質為了避免在長期充放電循環過程中與電解液反應,會將其材料做改質處理(多為氧化物)使其表面鈍化,又為了維持導電度,再將導電碳基材料,包含石墨、乙炔黑、碳黑等…額外加入電極中,然而,大量的導電碳並不能提供電容量,繼而造成電池的能量密度下降。近期以來,奈米碳管(CNT)因其高的電子傳導率、極佳的機械強度、好的熱傳導性質等,而成為受歡迎的鋰離子電池的導電碳材料選擇之一;但是相對於傳統的碳黑, CNT極高的價格始終對量產是個問題。在此研究中,我們比較碳黑、不同長度的奈米碳管:短(S-CNT)或長(L-CNT)添加至電極中的表現,設計一種低導電材料含量的鋰離子電池,不但可降低成本,但同時維持高導電度及高電容量;本研究全部以1安培-小時(1Ah)的商品型軟包型鋰離子電池來做為目標樣品進行探討,藉由減少正極中的導電碳材含量來增加活性物質的含量,當添加0.16 %長奈米碳管在LNCM為活物的正極中,1安培-小時 (1Ah) 鋰離子電池的重量能量密度可達224 Wh/kg,且體積能量密度達到549 Wh/L。當長奈米碳管的含量降低至0.08%,活性物質占比達97.92%時,其體積能量密度更高達554 Wh/L,此低比例奈米碳管添加量的高能量密度鋰離子電池具有穩定充放電循環表現,此研究的進展可應用在可攜式裝置及電動車電池的設計上,具有高度的商業應用性。
Rechargeable lithium-ion batteries (LIBs) have been widely used as a power source for many portable electronic devices due to the high energy density, light and environment friendly. In recent years, to seek higher energy density, high working voltage lithium metal oxides LiNixCoyMn1-x-yO2 (LNCM) has been chosen as active material in LIBs. The active material usually followed by passive surface modification to prevent active reactions between electrode and electrolyte interface. In order to maintain the conductivity, conductive carbon-based materials including acetylene black and carbon black become necessarily consisted in electrodes. However, a large quantity of the conductive carbon which cannot provide capacity as the active material will decrease the energy density of batteries. Recently, carbon nano-tube (CNT) appears as a popular choice for conductive carbon in LIB due to its remarkable properties such as high electronic conductivity, superior mechanical strength and good thermal conduction. But the ultra-high cost of CNT comparing to conventional carbon black is also a problem. In this work, we are going to introduce ‘short length’ and ‘long length’ carbon nano-tube (S-CNT and L-CNT) into electrode in order to design a reduced-amount conductive carbon electrode to maintain certain conductivity and high capacity with reasonable cost. The whole experiment will be done in 1 Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in positive electrode, the energy in weight and volume energy density of LNCM-based 1Ah pouch type LIBs with only 0.16 % of L-CNT inside LNCM positive electrode is 224 Wh/kg and 549 Wh/L, respectively. While L-CNT decreases to 0.08 % and the active material increases to 97.92 %, the energy density of 1Ah pouch cell can remarkably reach 554Wh/L. This high energy density LIB with small and effective amount of L-CNT reveals stable cyclability may become a valuable progress in portable devices and electric vehicle (EV) applications.
[1] B. Scrosati, J. Garche, "Lithium batteries: Status, prospects and future", J. Power Sources, 195 (2010) 2419–2430.
[2] P. Rozier, J.-M. Tarascon, "Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges", J. Electrochem. Soc., 162 (2015) A2490–A2499.
[3] S.-T. Myung, K. Amine, Y.-K. Sun, “Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries”, J. Mater. Chem., 20 (2010) 7074–7095.
[4] Z. Chen, Y. Qin, K. Amine, Y.-K. Sun, “Role of surface coating on cathode materials for lithium-ion batteries”, J. Mater. Chem., 20 (2010) 7606–7612.
[5] K. J. Rosina, M. Jiang, D. Zeng, E. Salager, A. S. Best, C. P. Grey, “Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries”, J. Mater. Chem., 22 (2012) 20602–22610.
[6] J. Mun, J.-H. Park, W. Choi, A. Benayad, J.-M. Lee, S.-G. Doo, S.M. Oh, "New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium-ion batteries", J. Mater. Chem. 2014, 2, 19670–19677.
[7] K.H. Anupriya, R. Ranjusha, S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, "Defining role of the surface and bulk contributions in camphoric carbon grafted lithium nickel manganese oxide powders for lithium-ion batteries", Ceram. Int., 41 (2015) 3269–3276.
[8] S. Niketic, M.C.D. Macneil, Y. Abu-Lebdeh, "Improving the performance of high voltage LiMn1.5Ni0.5O4 cathode material by carbon coating", J. Power Sources, 271 (2014) 285–290.
[9] M.S. Whittingham, “Lithium batteries and cathode materials”, Chem. Rev., 104 (2004) 4271–4301.
[10] C. Jiang, E. Hosono, H. Zhou, "Nanomaterials for lithium-ion batteries", Nano Today, 1 (2006) 28–33.
[11] M.S. Whittingham, "Materials challenges facing electrical energy storage", MRS Bull, 33 (2008) 411–419.
[12] X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.-C. Ma, M.F. Yuen, J.-K. Kim, “Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review”, Composites Science and Technology, 72 (2012) 121–144.
[13] G. Wang, Q. Zhang, Z. Yu, M. Qu, “The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes”, Solid State Ionics, 179 (2008) 263–268.
[14] A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, W. Schutz, “Study of multi-walled carbon nanotubes for lithium-ion battery electrodes”, J. Power Sources, 196 (2011) 3303–3309.
[15] N.A. Kaskhedikar, and J. Maier, “Lithium storage in carbon nanostructures”, Adv. Mater., 21(2009) 2664–2680.
[16] M. Inaba, and Z. Ogumi, “Up-to-date development of lithium-ion batteries in Japan”, IEEE Electrical Insulation Magazine, 17 (2001) 6–20.
[17] T. Nagaura and K. Tozawa, “Lithium-ion rechargeable battery”, Prog. Batt. Solar Cells, 9 (1990) 209–217.
[18] Y. Matsuda, Z. Takehara (Eds.), “Denchi Binran (Battery Handbook)”, 3rd Ed., Maruzen, Tokyo (2001) 278.
[19] X. Wang, E. Yasukawa, S. Kasuya, “Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode”, J. Electrochem. Soc., 148 (2001) A1066–A1071.
[20] S.S. Zhang, “A review on the separators of liquid electrolyte Li-ion batteries”, J. Power Sources, 164 (2007) 351–364.
[21] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte”, J. Power Source, 74 (1998) 219–227.
[22] H Shi, J. Barker, M. Y. Saidi, R. Koksbang, “Structure and lithium intercalation properties of synthetic and natural graphite”, J.Electrochem. Soc., 143 (1996) 3466.
[23] I. Mochida, Y. Korai, C. Hunku, “Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch”, Carbon, 38 (2000) 305–328.
[24] A. Hiroyuki, S. MasHio, O. Ken, “Practical performances of Li-ion polymer batteries with LiNi0.8Co0.2O2, MCMB, and PAN-based gel electrolyte”, J. Power Sources, 112(2) (2002) 577–582.
[25] T. Tsutomu, S. Morhiro, S. Atushi, “Charge/discharge efficiency improvement by the incorporation of conductive carbons in the carbon anode of Li-ion batteries”, J. Power Sources, 90 (2000) 45–51.
[26] Y. Nishi, “Carbonaceous materials for lithium ion secondary battery anodes”, Molecular Crystals and Liquid Crystals, 340 (2000) 419–424.
[27] Z. Chen, Y. Qin, Y. Ren, W. Lu, C. Orendorff, E. P. Roth, K. Amine, “Multi-scale study of thermal stability of lithiated graphite”, Energy Environ. Sci., 4 (2011) 4023–4030.
[28] C.T. Hsieh, J.Y. Lin, “Influence of Li addition on charge/discharge behavior of spinel lithium titanate”, J. Alloys Compd., 506 (2010) 231–236.
[29] H. Shiiba, M. Nakayama, M. Nogami, “Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system”, Solid State Ionics, 181 (2010) 994–1001.
[30] A.R. Armstrong, G. Armstrong, J. Canalis, R. Garcia, P.G. Bruce, “Lithium-ion intercalation into TiO2-B nanowires”, Adv. Mater., 17 (2005) 862–865
[31] M.N. Obrovac, Leif Christensen, Dinh Ba Le, J. R. Dahn, “Alloy design for lithium-ion battery anodes”, J. Electrochem. Soc., 154 (2007) A849–A855.
[32] J.W. Kim, J.H. Ryu, K.T. Lee, S.M. Oh, “Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries”, J. Power Sources, 147 (2005) 227–233.
[33] K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao, M. Cai, Z. Chen, “Silicon‐Based Anodes for Lithium‐Ion Batteries: From Fundamentals to Practical Applications”, Small, 14 (2018) 1702737.
[34] Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, “Silicon oxides: a promising family of anode materials for lithium-ion batteries”, Chem. Soc. Rev., 48 (2019) 285–309.
[35] S.D. Beattie, T. Hatchard, A. Bonakdarpour, K.C. Hewitt, J.R. Dahn, “Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries”, J. Electrochem. Soc., 150 (2003) A701–A705.
[36] W.-J. Zhang, “A review of the electrochemical performance of alloy anodes for lithium-ion batteries”, J. Power Sources, 196 (2011) 13–24.
[37] S. Yoon, A. Manthiram, “Sb-MOx-C (M = Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries”, Chem. Mater., 21 (2009) 3898–3904.
[38] Y. Lu, L. Yu, X.W. Lou, “Nanostructured conversion-type anode materials for advanced lithium-ion batteries”, Chem, 4 (2018) 972–996.
[39] J.M. Chen, C.L. Tsai, C.Y. Yao, S.P. Sheu and H.C. Shih, “Experimental design method applied to Li/LiCoO2 rechargeable cells”, Mater. Chem. Phys., 51 (1997) 100–194.
[40] C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F. Weill, A.Chadwick, M. Broussely, F. Perton, Ph. Biensan and P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview”, J. Power Sources 68 (1997) 120.
[41] D. G. Wickham and W. J. Croft, “Crystallographic and magnetic properties of several spinel containing trivalent ja-1044 manganese”, J. Phys. Chem. Solids, 7 (1958) 351–360.
[42] J. C. Hunter, “Preparation of a new crystal form of manganese- dioxide – lambda-MnO2”, J. Solid State Chem., 39 (1981) 142–147.
[43] P. Arora, R.E. White, M. Doyle, “Capacity Fade Mechanisms and side reactions in Lithium‐ion batteries”, J.Electrochem. Soc., 145 (1998) 3647–3667.
[44] A.M. Kannan, A. Manthiram, “Surface/chemically modified LiMn2O4 cathodes for lithium-ion batteries”, Electrochemical and Solid-State Letters, 5 (2002) A167–A169.
[45] W.K. Kim, D.W. Han, W.H. Ryu, S.J Lim, H.S. Kwon, “Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance”, Electrochim. Acta, 71 (2012) 17–21.
[46] F. Lai, X. Zhang, H. Wang, S. Hu, X. Wu, Q. Wu, Y. Huang, Z. He, Q. Li, “Three-Dimension Hierarchical Al2O3 Nanosheets Wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries”, ACS Appl. Mater. Interfaces, 8 (2016) 21656–21665.
[47] M. Guilmard, A. Rougier, M. Grüne, L. Croguennec, C. Delmas, “Effects of aluminum on the structural and electrochemical properties of LiNiO2”, J. Power Sources, 115 (2003) 305–314.
[48] S.H. Park, K.S. Park, Y.K. Sun, K.S. Nahm, Y.S. Lee, M. Yoshio, “Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol–gel method”, Electrochim. Acta, 46 (2001) 1215–1222.
[49] Z. Lu, D.D. MacNeil, J.R. Dahn, “Layered Li[ NixCo1 − 2xMnx ]O2 cathode materials for lithium-Ion batteries”, Electrochem. Solid State Lett., 4 (2001) A200–203.
[50] T. Ohzuku, Y. Makimura, “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries”, Chem. Lett., (2001) 642–643.
[51] T. Ohzuku, Y. Makimura, “Layered lithium insertion material of LiNi1/2Mn1/2O2 : a possible alternative to LiCoO2 for advanced lithium-ion batteries”, Chem. Lett., (2001) 744–745.
[52] K.M. Shaju, S. Rao, B.V.R. Chowdari, “Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries”, Electrochim. Acta, 48 (2002) 145–151.
[53] H.S. Kim, M. Kong, K. Kim, I.J. Kim, H.B. Gu, “Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries”, J. Power Sources, 171 (2007) 917–921.
[54] H.J. Noh, S. Youn, C.S.Yoon, Y.K. Sun, “Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries”, J. Power Sources, 233 (2013) 121–130.
[55] S. Levasseur, M. Menetrier, C. Delmas, “Combined effects of Ni and Li doping on the phase transitions in LixCoO2 electrochemical and 7Li nuclear magnetic resonance studies” J. Electrochem. Soc., 149 (2002) A1533–1540.
[56] L.Q. Zhang, K. Takada, N. Ohta, K. Fukuda, T. Sasaki, “Synthesis of (1 − 2x)LiNi1/2Mn1/2O2·xLi[Li1/3Mn2/3]O2·xLiCoO2 (0 ≤ x ≤ 0.5) electrode materials and comparative study on cooling rate”, J. Power Sources, 146 (2005) 598–601.
[57] J.M. Zheng, X.B. Wu, Y. Yang, “A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery” Electrochim. Acta, 56 (2011) 3071–3078.
[58] P.Yan, L. Xiao, J. Zheng, Y. Zhou, Y. He, X. Zu, S.X. Mao, J. Xiao, F. Gao, J.G. Zhang, C.M. Wang, “Probing the degradation mechanism of Li2MnO3 cathode for lii-ion batteries”, Chem. Mater., 27(2015) 975–982.
[59] A. K. Padhi, K. Nanjundaswamy and J. B. D. Goodenough, “Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries”, J.Electrochem. Soc., 144 (1997) 1188–1194.
[60] S.G. Stewart, V. Srinivasan, J. Newman, “Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation”, J. Electrochem. Soc., 155 (2008) A664–A671.
[61] K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues,A. Mauger and C. M. Julien, “Safe and fast-charging Li-ion battery with long shelf life for power applications”, J. Power Sources, 196 (2011) 3949–3954.
[62] S. Novikova, S. Yaroslavtsev, V. Rusakov, A. Chekannikov,T. Kulova, A. Skundin and A. Yaroslavtsev, “Behavior of LiFe1-yMnyPO4/C cathode materials upon electrochemical lithium intercalation/deintercalation”, J. PowerSources, 300 (2015) 444–452.
[63] R. Muruganantham, M. Sivakumar and R. Subadevi, “Enhanced rate performance of multiwalled carbon nanotube encrusted olivine type composite cathode material using polyol technique”, J.Power Sources, 300 (2015) 496–506.
[64] M.E. Spahr, in: M. Yoshio, R.J. Brodd, A. Kozawa (Eds.), “Lithium-ion
Batteries—Science and Technology”, Springer, New York, 2009, pp. 117–154.
[65] Y.B. Yi, C.W. Wang, A.M. Sastry, “Two-Dimensional vs. Three-Dimensional clustering and percolation in fields of overlapping ellipsoids”, J. Electrochem. Soc., 151 (2004) A1292–A1300.
[66] M.E. Spahr, D. Goers, A. Leonea, S. Stallonea, E, Grivei, “Development of carbon conductive additives for advanced lithium-ion batteries”, J. Power Sources, 196 (2011) 3403–3413.
[67] G. Kühner, M. Voll, in: J.-B. Donnet, R.C. Bansai, M.-J. Wang (Eds.), “Carbon
Black—Science and Technology”, Marcel Dekker, Inc., New York, 1993, pp. 1–66.
[68] F. Beguin, E. Frackowiak (Eds.), “Carbons for Electrochemical Energy Storage and Conversion Systems”, CRC Press, 2009, pp. 263–278.
[69] K. Sheem, Y. H. Lee, H. S. Lim, “High-density positive electrodes containing carbon nanotubes for use in Li-ion cells”, J. Power Sources, 158 (2006) 1425–1430.
[70] R.S. Rubino, H. Gan, E.S. Takeuchi, “A Study of capacity fade in cylindrical and prismatic lithium-ion batteries”, J. Electrochem. Soc., 148 (2001) A1029–A1033.
[71] D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, ”Mechanics of carbon nanotubes”, Appl Mech Rev, 55 (2002) 495–533.
[72] H. Li, Z. Wang, L. Chen, X. Huang, “Research on advanced materials for Li-ion
Batteries”, Adv Mater, 21 (2009) 4593–4607.
[73] T. Ishihara, A. Kawahara, H. Nishiguchi, M. Yoshio, Y. Takita, “Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery”, J. Power Sources, 97–98 (2001) 129–132.
[74] J. Xu, G. Chen, X. Li, “Electrochemical performance of LiFePO4 cathode material coated with multi-wall carbon nanotubes”, Materials Chemistry and Physics 118 (2009) 9–11.
[75] W.R. Liu, S.L. Kuo, C.Y. Lin, Y.C. Chiu, C. Y. Su, H.C. Wu, C.T. Hsieh, “Characterization and electrochemical behavior of graphene-based anode for Li-ion batteries”, The Open Materials Science Journal 5 (Suppl 1: M6) (2011) 236–241.
[76] X. Meng, “Recent progress of graphene as cathode materials in lithium ion Batteries”, Earth Environ. Sci., 300 (2019) 042039.
[77] W. An, J. Fu, S. Mei, L. Xia, X. Li, H. Gu, X. Zhang, B. Gao, P.K. Chu, K. Huo, “Dual carbon layer hybridized mesoporous tin hollow spheres for fast-rechargeable and highly-stable lithium-ion battery Anodes”, J. Mater. Chem. A, 5 (2017) 14422−14429.
[78] S.W. Oh, Z.-D. Huang, B. Zhang, Y. Yu, Y.-B. He and J.-K. Kim, “Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by the polyol method”, J. Mater. Chem. 22 (2012) 17215–17221.
[79] W.S. Tait, “An introduction to electrochemical corrosion testing for practicing” Engineers and Scientists, Racine, Pair O Docs, Wisconsin, 1994
[80] J.R. Macdonald, “Impedance spectroscopy–emphasizing solid materials and systems”, John Wiley & Sons, New York, 1987
[81] D.A. Jones, “Principles and prevention of corrosion” 2nd Ed., Simon & Schuster, 1996
[82] F. Mansfield, “New trends in the investigation of electrochemical systems by impedance techniques: multi-transfer function analysis”, Elctrochim. Acta 35 (1990) 1553–1557.
[83] H.C. Shih (Eds.), “EIS Electrochemical Impedance Spectroscopy”, Institute of Materials Science and Nanotechnology, Chinese Culture University, 2008, pp. 40–60.
[84] J.J. Brophy, “Basic Electronics for Scientists”, 3rd Ed., McGraw-Hill, New York, 1971.
[85] W. Lederman, “Complex Numbers”, pub., Routledge and Kegan Paul, London, 1962.
[86] C.T. Hsieh, C.T. Pai, Y.F. Chen, P.Y. Yu, R.S. Juang, “Electrochemical performance of lithium iron phosphate cathodes at various temperatures”, Electrochim. Acta, 115 (2014) 96–102.
[87] H.H. Chang, C.C. Chang, C.Y. Su, H.C. Wu, M.H. Yang, N.L. Wu, “Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries”, J. Power Sources, 185 (2008) 466–472.
[88] H. Shu, X. Wang, W. Wen, Q. Liang, X. Yang, Q. Wei, B. Hu, L. Liu, X. Liu, Y. Song, M. Zho, Y. Bai, L. Jiang, M. Chen, S. Yang, J. Tan, Y. Liao, H. Jiang, “Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping”, Electrochim. Acta, 89 (2013) 479– 487.
[89] M. Holzapfel, A. Martinent, F. Alloin, B. Le Gorrec, R. Yazami, C. Montella, “First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy”, J. Electroanal. Chem., 546 (2003) 41–50.
[90] T. Piao, S.M. Park, C.H. Doh, S.I. Moon, “Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements articles”, J. Electrochem. Soc., 146 (1999) 2794–2798.
[91] T.S. Ong, H. Yang, “Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization”, J. Electrochem. Soc., 149 (2002) A1–A8.
[92] Q.C. Zhuang, T. Wei, L.L. Du, Y.L. Cui, L. Fang, S.G. Sun, “An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4”, J. Phys. Chem. C, 114 (2011) 8614–8621.
[93] H.L. Tsai, C.T. Hsieh, J. Li, Y. Gandomi, “Enabling high-rate charge and discharge capacity, low internal resistance, and excellent cycleability for Li-ion batteries utilizing graphene additives”, Electrochim. Acta, 273 (2018) 200–207.
[94] Y.O. Kim, S.M. Park, “Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments”, J. Electrochem. Soc., 148 (2001) A194–A199.
[95] E. Smith, G. Dent, “Modern Raman Spectroscopy: A Practical Approach”, John Wiley & Sons Ltd., New York, 2005, pp. 1–20.
[96] D.J. Gardiner, P.R. Graves (Eds.), “Practical Raman spectroscopy” Springer-Verlag, Berlin, 1989.
[97] R. Graupner, “Raman spectroscopy of covalently functionalized single-wall carbon nanotubes”, J. Raman Spectrosc., 38 (2007) 673–683.
[98] A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, U.D. Venkateswaran, Y-K. Kwon, D. Tománek, “Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes”, Phys. Rev. Lett., 86 (2001) 3895–3898.
[99] Q. Zhao, H.D. Wagner, “Raman spectroscopy of carbon–nanotube–based composites”, Phil. Trans. R. Soc. A., 362 (2004) 2407–2424.
[100] E.G. Shim, T.H. Nam, J.G. Kim, H.S. Kim, S.I. Moon, “Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries”, Electrochim. Acta, 54 (2009) 2276– 2283.
[101] Y.H. Li, M.L. Lee, F.M. Wang, C.R. Yang, P.J. Chua, J.P. Pan, “Electrochemical characterization of a branched oligomer as a high-temperature and long-cycle-life additive for lithium-ion batteries”, Electrochim. Acta, 85 (2012) 72– 77.
[102] S.S. Zhang, K. Xu, T.R. Jow, “Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery”, J. Power Sources, 160 (2006) 1403–1409.
[103] S. Zang, P. Shi, “Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte”, Electrochim. Acta, 49 (2004) 1475–1482.
[104] Z. Xiong, S.Y. Young, J. Hyoung-Joon, “Applications of carbon nanotubes for lithium ion battery anodes”, Materials, 6 (2013) 1138–1158.
[105] H. Gwon, J. Hong, H. Kim, D.H. Seo, S. Jeon, K. Kang, “Recent progress on flexible lithium rechargeable batteries”, Energy Environ. Sci., 7 (2014) 538–551.