研究生: |
魏明正 Wei Ming Cheng |
---|---|
論文名稱: |
DNA與樹枝狀高分子形成奈米微粒結構分析與基因表現之探討 |
指導教授: |
宋信文
Song Xin Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 樹枝狀高分子 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Dendrimer具樹枝狀的結構,可作為新穎的基因載體。本實驗利用Dendrimer結構上帶有大量的胺基,製備三種不同質子化程度的Dendrimer,分別為dp=0.1、dp=0.3及dp=0.9與直鏈狀DNA (pEGFP-N2)形成奈米微粒後,以小角度散射分析其內部結構。其中dp=0.1的奈米微粒內部結構呈現平面四角形,dp=0.3呈現平面四角形與不規則共存形態,dp=0.9屬於完全不規則的分佈形態。除此之外,亦分析其粒徑大小、表面電荷及TEM粒子形態。接著以此三種內部結構的奈米微粒進行HT1080細胞轉染實驗,結果顯示dp=0.3的奈米微粒相較於dp=0.1與dp=0.9有較高的細胞轉染效率與基因表現量。再利用FITC接枝於Dendrimer表面胺基上,用以追蹤奈米微粒被細胞吞食的情形,結果顯示細胞吞噬較多dp=0.3的奈米微粒。最後為探討奈米微粒胞飲的機制,以抑制劑wortmanin抑制macropinocytosis及Filipin、MβCD、Genistein抑制caveolin-dependent endocytosis後,可以降低細胞吞食奈米微粒的能力,尤其以dp=0.3的效果較為顯著。更進一步的研究,則以anti-caveolin-1的抗體標定細胞,發現caveolin確實參與了Dendrimer/DNA奈米微粒的胞飲過程。以上的實驗結果,顯示Dendrimer/DNA奈米微粒的幾何形狀會影響到基因轉染的效率。
第六章 參考文獻
1. Tomalia DA, Baker H, Dewald J. A new class of polymers- starburst- dendritic macromolecules. Polym 1985;17:117– 132.
2. Tomalia DA, Frechet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A: Polym Chem 2002;40:2719– 2728.
3. Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005;57: 2177-2202.
4. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J and Smith P. Dendritic macromolecules-synthesis of starburst dendrimers. Macromolecules 1986;19:2466– 2468.
5. Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multiva- lent ligands and inhibitors. Angew Chem Int Ed Engl 1998;37: 2754–2794.
6. Fischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24:1121–1131.
7. Anderson WF. Human gene therapy. Nature 1998;392:25– 30.
8. Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J. A new DNA vehicle for nonviral gene delivery: supercoiled mini circle. Gene Ther 1997;4:1341– 1349.
9. Chai M, Niu Y, Youngs WJ, Rinaldi PL. Structure and confor- mation of DAB dendrimers in solution via multidimensional NMR techniques. J Am Chem Soc 2001;123:4670– 4678.
10. Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today 2000;3: 232–245.
11. Cloninger MJ, Biological applications of dendrimers. Curr Opin Chem Biol 2002;6:742–748.
12. Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res 2002;19:960– 967
13. Ottaviani MF, Favuzza P, Sacchi B, Turro NJ, Jockusch S, Tomalia DA. Interactions between starburst dendrimers and mixed DMPC/DMPA-Na vesicles studied by the spin label and the spin probe techniques, supported by transmission electron microscopy. Langmuir 2002;18:2347–2357.
14. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Rel 2000;65: 133– 148.
15. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997;4:823–832.
16. Su CJ, Liu YC, Chen HL, Li YC, Lin HK, Liu WL, Hsu CS. Two-dimensional densely packed DNA nanostructure derived from DNA complexation with a low-generation poly(amidoamine) dendrimer. Langmuir 2007;23:975– 978.
17. Li Y, Tseng YD, Kown SY, d’Espaux L, Bunch JS, McEuen PL and Luo D. Controlled assembly of dendrimer-like DNA. Nature mater 2004;3:38-42.
18. Shah DS, Sakthivel T, Toth I, Florence AT and Wilderspin AF. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 2000;208:41-48
19. Kim TI, Baek JU, Zhe BC and Park JS. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials 2007;28:2061-2067.
20. Haensler J, Szoka FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993;4:372-379
21. Tang MX, Redemann CT, Szoka FC. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 1996;7: 703-714.
22. Jevprasesphant R, Penny J, Attwood D, McKeown NB, A. D'Emanuele. Engineering of Dendrimer Surfaces to Enhance Transepithelial Transport and Reduce Cytotoxicity. Pharm Res 2003;20:1543-50.
23. Manunta M, Tan PH, Sagoo P, Kashefi K, George AJT. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res 2004;32:2730-2739.
24. Jevprasesphant R, Penny J,Attwood D, Emanuele AD. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Rel 2004;97:259-267.
25. Manunta M, Nichols BJ, Tan PH, Sagoo P, Harper J, George AJ. Gene delivery by dendrimers operates via different pathways in different cells, but is enhanced by the presence of caveolin. J Immunol Methods 2006;314:134-146.
26. Choi YS, Thomas T, Kotlyar A, Islam MT, Baker JR. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol 2005;12:35-43.
27. Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007;8:603–612.