簡易檢索 / 詳目顯示

研究生: 陳和穎
Ho-Yin Chen
論文名稱: 矽鍺異質接面雙載子電晶體在高集極偏壓下的元件模型
The Device Model of SiGe HBTs Operated under High Collector Voltage Bias
指導教授: 龔正教授
Prof. Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 81
中文關鍵詞: 矽鍺雙載子電晶體元件模型高集極偏壓穿遂效應量子效應
外文關鍵詞: SiGe, HBT, Model, High collector bias voltage, Tunneling effect, Quantum effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文針對0.18微米製程的矽鍺異質接面雙載子電晶體在高集極偏壓操作點作分析與模型建立。當矽鍺異質接面雙載子電晶體操作在高集極偏壓時,發現集極與基極會出現兩階段突然增加的電流,集基接面由於傳導帶不連續,會形成兩個量子能階,在高集基偏壓下,電子穿隧效應發生,會進而導致兩階段的電流突增。這些穿隧電子經過集基接面的空乏區,會因為累增效應而碰撞產生許多電子電洞對,其中電子與穿隧電子形成巨大的集極電流,電洞則從基極流出形成巨大的基極電流。這兩個量子能階剛好對應到兩個階段的電流突增。

    兩階段的電流突增,剛好可以把集極電流跟基極電流各分成四個區段,每一個區段都可以用一個開關控制的路徑來做等效表示,模型中心加上一個正常偏壓下的雙載子電晶體的等效電路,當開關關閉時,元件特性與正常偏壓下相同,當開關打開時,元件特性為正常偏壓特性加上路徑流過的電流值。因此,此篇論文中的電晶體模型可以準確的使較大的操作電壓範圍都符合量測結果。利用這個矽鍺異質接面雙載子電晶體模型,可以模擬一些需要應用到異質接面雙載子電晶體操作在高集極偏壓下的的電路,進而朝向其在小訊號特性與交流特性作深入的分析。

    高集極操作電壓的物理原理及分析,與廣大操作區間的電晶體模型,有許多有價值的應用,也可進一步的研究與發展。


    The 0.18μm SiGe HBTs operated under high collector bias are analyzed and modeled in this thesis. A new mechanism is found that SiGe HBTs operate at high collector voltage will have two current jumps. These two sudden current jumps occur is due to tunneling effect of electrons in two quantum levels which are formed by conduction band discontinuity at collector-base junction. By multiplying those tunneling electrons with avalanche multiplication factor in the depletion region, large amount of electron-hole pairs will flow out of collector and base terminals. Two stages of current jumps in IC and IB take place correspond to tunnel effect of two quantum levels.

    Two current jumps at high collector voltage split IC and IB into four regions, respectively. A device model is built by adding on a general HBT equivalent circuit with four switch controlled paths between both collector-emitter and base-emitter junction. Therefore, the model in this thesis can fit the measured results with widely operating range quite accurately. Some useful applications can be simulated by this developed model, such as small signal characteristics, ac characteristics, and circuit design. There may still have many valuable applications for this new mechanism.

    Chinese Abstract………………………………………………Ⅰ English Abstract………………………………………………Ⅱ Acknowledgement ………………………………………………Ⅲ Contents…………………………………………………………Ⅳ 1.Introduction…………………………………………………1 2.SiGe HBTs ……………………………………………………2 2.1 SiGe HBTs…………………………………………………2 2.2 Device Characteristics ………………………………3 2.2.1 Current Flow…………………………………………3 2.2.2 Gummel Plot …………………………………………4 2.2.3 IC-Versus-VCE ………………………………………5 2.3 Energy Band………………………………………………7 2.3.1 Bandgap Discontinuity ……………………………8 2.3.2 Bandgap Narrowing …………………………………11 2.3.3 Tunneling Effect……………………………………13 2.3.4 Avalanche Breakdown ………………………………13 2.4 HBT Model…………………………………………………14 2.4.1 Basic DC Model………………………………………15 2.4.2 Basic AC Model………………………………………16 2.4.3 Small Signal Model…………………………………18 2.5 Parameter Extraction …………………………………19 2.5.1 Extrinsic Resistances ……………………………20 2.5.2 Intrinsic Resistances and Transconductance…23 2.5.3 Intrinsic Capacitances……………………………25 2.6 Quantum Effect …………………………………………25 3. A New Mechanism at High Operating Voltage…………30 3.1 Measurement………………………………………………30 3.1.1 Normal Operating Voltage…………………………30 3.1.2 High Collector Voltage……………………………34 3.2 Special Mechanism………………………………………38 3.3 Quantum Effect on Tunneling…………………………41 4. Model of SiGe HBTs ………………………………………48 4.1 Model at Normal Operating Voltage…………………48 4.2 Model at High Collector Voltage……………………55 4.2.1 Equivalent Circuit…………………………………58 4.2.2 How to Control the Switches ……………………60 4.2.3 How to Control the Current Sources……………63 4.2.4 Simulation Result …………………………………70 4.3 Total Model of 0.18μm SiGe HBTs……………………71 5. Conclusion and Future Work ……………………………73 Reference ………………………………………………………74 Appendix I………………………………………………………78 Appendix II ……………………………………………………79

    1. Ahlgren, D.C. ; Gilbert, M. ; Greenberg, D. ; Jeng, J. ; Malinowski, J. ; Nguyen-Ngoc, D. ; Schonenberg, K. ; Stein, K. ; Groves, R. ; Walter, K. ; Hueckel, G. ; Colavito, D. ; Freeman, G. ; Sunderland, D. ; Harame, D.L. and Meyerson, B. , “Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace” , Electron Devices Meeting , pp.859–862 , Dec. 1996

    2. Schuppen, A. ; Gerlach, S. ; Dietrich, H. ; Wandrei, D. ; Seiler, U. and Konig, U. , “1-W SiGe power HBTs for mobile communication” , Microwave and Guided Wave Letters, IEEE , vol.6 , pp.341-343 , Sept. 1996

    3. Schuppen, A. ; Dietrich, H. ; Gerlach, S. ; Hohnemann, H. ; Arndt, J. ; Seller, U. ; Gotzfried, R. ; Erben, U. and Schumacher, H. , “SiGe-technology and components for mobile communication systems” , Bipolar/BiCMOS Circuits and Technology Meeting , pp.130-133 , Oct. 1996

    4. Henderson,G.N. ; O'Keefe,M.F. ; Boles,T.E. ; Noonan,P. ; Sledziewski, J.M. and Brown, B.M. , “SiGe bipolar junction transistors for microwave power applications” , Microwave Symposium Digest, 1997., IEEE MTT-S International , vol.3 , pp.1299-1302 , June 1997

    5. B. Mazhari and H. Morkoc , “Effect of collector-base valence-band discontinuity on Kirk effect in double-heterjunction bipolar transistors” , University of Illinois at Urbana Champaign , vol.59 , pp.2162-2164 , Oct. 1991

    6. Jiann S. Yuan , “SiGe, GaAs, and InP heterojunction bipolar transistors” , A wiley interscience publication , 1999

    7. Sankaran, V. ; Hinckley, J.M. and Singh, J. , “Theoretical small-signal performance of Si/SiGe/Si HBT” , Electron Devices, IEEE Transactions on , vol.40 , pp.1589–1596 , Sept. 1993

    8. Harame, D.L. ; Comfort, J.H. ; Cressler, J.D. ; Crabbe, E.F. ; Sun, J.Y.-C. ; Meyerson, B.S. and Tice, T. , “Si/SiGe epitaxial-base transistors. I. Materials, physics, and circuits” , Electron Devices , IEEE Transactions on , vol.42 , pp.455–468 , March 1995

    9. Ben G. Streetman and Sanjay Banerjee , “Solid state electronic devices” , Prentice hall , 2000

    10. Yuan Taur and Tan H. Ning , “Fundamentals of modern VLSI devices” , Combridge university press , 1998

    11. Gruhle, A. , “The influence of emitter-base junction design on collector saturation current, ideality factor, Early voltage, and device switching speed of Si/SiGe HBT's” , Electron Devices, IEEE Transactions on , vol.41 , pp.198-203 , Feb. 1994

    12. Prinz, E.J. ; Garone, P.M. ; Schwartz, P.V. ; Xiao, X. and Sturm, J.C. , “The effect of base-emitter spacers and strain dependent densities of states in Si/Si1-xGex/Si heterojunction bipolar transistors” , Electron Devices Meeting, 1989. Technical Digest., International , pp.639-642 , Dec. 1989

    13. Matutinovic-Krstelj, Z. ; Venkataraman, V. ; Prinz, E.J. ; Sturm, J.C. and Magee, C.W. , ” Base resistance and effective bandgap reduction in n-p-n Si/Si1-xGex/Si HBTs with heavy base doping” , Electron Devices, IEEE Transactions on , vol.43 , pp.457-466 , March 1996

    14. Gan, C.H. ; del Alamo, J.A. ; Bennett, B.R. ; Meyerson, B.S. ; Crabbe, E.F. ; Sodini, C.G. and Reif, L.R. , “Si/Si1-xGex valence band discontinuity measurements using a semiconductor-insulator-semiconductor (SIS) heterostructure” , Electron Devices, IEEE Transactions on , vol.41 , pp.2430-2439 , Dec. 1994

    15. Le Tron, B. ; Hashim, M.D.R. ; Ashburn, P. ; Mouis, M. ; Chantre, A. and Vincent, G. , “Determination of bandgap narrowing and parasitic energy barriers in SiGe HBT's integrated in a bipolar technology” , Electron Devices, IEEE Transactions on , vol.44 , pp.715-722 , May 1997

    16. Lopez-Gonzalez, J.M. and Prat, L. , “The importance of bandgap narrowing distribution between the conduction and valence bands in abrupt HBTs” , Electron Devices, IEEE Transactions on , vol.44 , pp.1046-1051 , July 1997

    17. Lu, P.-F. and Chen, T.-C. , “Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors” , Electron Devices, IEEE Transactions on , vol.36 , pp.1182-1188 , June 1989

    18. Jeong, H. and Fossum, J.G. , “Modeling impact ionization in advanced bipolar transistors for device/circuit simulation” , Bipolar Circuits and Technology Meeting, 1988. , pp 107-110 , Sept. 1988

    19. J. J. Ebers and J. L. Moll , “Large-signal behavior of junction transistors” , Proc. IRE , vol.42 , pp.1761-1772 , 1954

    20. Fellows, J.A. ; Bright, V.M. and Jenkins, T.J. , “A physics-based heterojunction bipolar transistor model for integrated circuit simulation” , Aerospace and Electronics Conference, 1994. , vol.1 , pp.334-341 , May. 1994

    21. Bright, V.M. ; Jenkins, T.J. and Fellows, J.A. , “An accurate physics-based broadband heterojunction bipolar transistor model for SPICE-assisted microwave circuit design” , Microwave Symposium Digest, 1994. , vol.2 , pp.1265-1268 , May 1994

    22. Fuse, T. ; Kawanaka, S. ; Inoh, K. and Shino, T. , “A compact lateral-SOI BJT model for RF circuit simulation” , Simulation of Semiconductor Processes and Devices, 1999. , pp.19-22 , Sept. 1999

    23. Helmy, A. ; Sharaf, K. and Ragai, H. , “A simplified analytical model for nonlinear distortion in RF bipolar circuits” , Circuits and Systems, 2000. , vol.2 , pp.966-969 , Aug. 2000

    24. Tzung-Yin Lee ; Fox, R.M. ; Green, K. and Vrotsos, T. , “Modeling and parameter extraction of BJT substrate resistance” , Bipolar/BiCMOS Circuits and Technology Meeting, 1999. , pp.101-104 , Sept. 1999

    25. P. E. Gray ; D. DeWitt ; A. R. Boothroyd and J. F. Gibbons , “Physical electronics and circuit models of transistors” , Semiconductor electronics education committee, vol.2 , 1964

    26. K.Schroder , “Semiconductor material and device characterization” , A Wiley-interscience publication , 1998

    27. I. Getreu , “Modeling the bipolar transistor” , Tektronix , Beaverton , 1976

    28. K. C. Sedra and K. C. Smith , “Microelectronic Circuits” , Saunders college publishing , 1997

    29. 曾謹言and 錢伯初 , “量子力學專題分析” , 凡異出版社 , 1987

    30. Raymond A. Serway ; Clement J. Moses and Curt A. Moyer , “Modern physics” , Saunders college publishing , 1997

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE