簡易檢索 / 詳目顯示

研究生: 許惟廷
Hsu, Wei-Ting
論文名稱: 光合成DNA-奈米粒子複合材料於有機記憶體元件研究
Photo-triggered DNA-nanoparticles composite in the application of organic memory devices
指導教授: 洪毓玨
Hung, Yu-Chueh
口試委員: 金雅琴
黃淑娟
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 109
中文關鍵詞: DNA有機記憶體奈米粒子光化學法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來去氧核醣核酸 (DNA) 生物高分子逐漸受到越來越多的關注,也發現其應用在光電方面上諸多有潛力的特性,同時由於金屬離子具有易吸附在DNA上的特性,使得DNA為一個適用於金屬奈米粒子合成的模板。
    在本研究中我們呈現DNA和數種表面活性劑的製備,並且探討其在光、熱和電方面的特性。此外我們利用光化學法合成銀奈米粒子,應用在有機記憶體元件上,結構為DNA混合銀奈米粒子的有機層包覆銀和ITO電極,此記憶體元件擁有雙穩態的特性,到達臨界電壓時可以從低導態 (OFF) 躍遷成高導態 (ON),而開關電流比可達102~103,且無論在低導態或高導態,資料儲存時間都可達105秒以上,在此我們提供了一種藉由照光來實現有機記憶體元件的方法。


    第一章 文獻回顧與介紹....................................1 1.1 DNA分子介紹與其應用.............................1 1.1.1 DNA分子簡介............................... 1 1.1.2 DNA材料的發展與其應用.....................3 1.2 金屬奈米粒子的介紹與其應用.......................8 1.2.1 金屬奈米粒子簡介........................... 8 1.2.2 金屬奈米粒子的製備方法.....................10 1.2.3 金屬奈米粒子於DNA分子上之應用............14 1.2.4 金屬奈米粒子的其他應用.....................15 1.3 有機記憶體的介紹與其應用........................16 1.3.1 有機記憶體的發展.......................... 16 1.3.2 有機記憶體的種類...........................20 1.3.3 有機記憶體的參數...........................21 1.3.4 傳導機制...................................22 1.4 研究動機........................................26 1.5 論文架構........................................27 第二章 DNA材料製備與特性..............................28 2.1 DNA材料製備................................... 28 2.1.1 DNA-CTMA製備............................30 2.1.2 DNA-VBTMA、DNA-BTMA、DNA-PTMA製備... 30 2.2 DNA材料特性....................................32 2.2.1 FTIR光譜.................................. 32 2.2.2 UV光譜....................................35 2.2.3 折射率.....................................37 2.2.4 溶解度.................................... 37 2.2.5 能階.......................................38 2.2.6 熱特性.....................................39 2.2.7 薄膜特性...................................40 2.2.8 電特性.....................................42 第三章 有機記憶體元件製備方法與量測.....................46 3.1 有機記憶體元件製備方法.......................... 46 3.2 有機記憶體元件量測儀器..........................53 3.2.1 電性量測儀器.............................. 53 3.2.2 TEM量測儀器..............................54 3.2.3 膜厚量測儀器.............................. 54 3.2.4 UV/VIS光譜量測儀器........................55 第四章 結果與討論.......................................57 4.1 TEM量測....................................... 57 4.2 元件特性量測....................................68 4.2.1 不同照光時間...............................70 4.2.2 不同濃度...................................73 4.2.3 添加銀奈米粒子.............................75 4.2.4 穩定性量測.................................77 4.2.5 反應時間量測...............................82 4.2.6 C-V量測...................................84 4.3 機制討論........................................88 4.4 DNA-CTMA與DNA-VBTMA之比較.................97 第五章 結論與未來展望..................................99 參考文獻................................................100

    [1] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids,” Nature 171, 737–738 (1953).
    [2] J. A. Hagen, “Enhanced Luminous Efficiency and Brightness using DNA Electron Blocking Layers in Bio-Organic Light Emitting Diodes.” (2006).
    [3] K. Aoi, A. Takasu, and M. Okada, “DNA-based polymer hybrids Part I. Compatibility and physical properties of poly (vinyl alcohol)/DNA sodium salt blend,” Polymer 41, 2847–2853 (2000).
    [4] C. Aleman, B. Teixeira-Dias, D. Zanuy, F. Estrany, E. Armelin, and L. J. del Valle, “A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene), ” Polymer 50, 1965–1974 (2009).
    [5] Y. Doi, J. Chiba, T. Morikawa, and M. Inouye, “Artificial DNA made exclusively of nonnatural C-nucleosides with four types of nonnatural bases,” J. Am. Chem. Soc. 130, 8762–8768 (2008).
    [6] W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams, and P. Alivisatos, “Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis, ” Nano Lett. 3, 33–36 (2002).
    [7] J. Zhang, Y. Liu, Y. Ke, and H. Yan, “Periodic square-like gold nanoparticle arrays template by self-assembled 2D DNA nanogrids on a surface, ” Nano Lett. 6, 248–251 (2006).
    [8] H. J. Kim, Y. Roh, S. K. Kim, and B. Hong, “Fabrication and characterization of DNA-templated conductive gold nanoparticle chains,” J. Appl. Phys. 105, 074302 (2009).
    [9] Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. Mao, “Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral,” Nature 452, 198–201 (2008).
    [10] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified apontaneous emission from fluorescent-dye-doped DNA–Surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
    [11] A. J. Steckl, “DNA—A new material for photonics,” Nature Photon. 1, 3–5 (2007).
    [12] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
    [13] V. Kolachure and M. H.-C. Jin, “Fabrication of P3HT/PCBM bulk heterojuction solar cells with DNA complex layer,” presented at 33rd IEEE Photovoltaic Specialists Conference (2008).
    [14] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8, 648–654 (2007).
    [15] G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, “Microwave dielectric properties of DNA based polymers between 10 and 30 GHz,” IEEE Microwave Wireless Comp. Lett. 15, 232–234 (2005).
    [16] Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye-doped DNA nanofibers,” Soft Matter 4, 1448–1453 (2008).
    [17] J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94, 241106 (2009).
    [18] R. A. Jones, W. X. Li, H. Spaeth, and A. J. Steckl, “Direct write electron beam patterning of DNA complex thin films,” J. Vac. Sci. Technol. B 26, 2567–2568 (2008).
    [19] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118 (2007).
    [20] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584–8591 (2004).
    [21] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified apontaneous emission from fluorescent-dye-doped DNA–Surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
    [22] 莊萬發,“超微粒子理論應用”,復漢出版社,民國84年4月。
    [23] F. Mafune´, J. Kohno, Y. Takeda, and T. Kondow, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,” J. Phys. Chem. B 104, 9111-9117 (2000).
    [24] Y. Takeuchi, T. Ida and K. Kimura, “Colloidal Stability of Gold Nanoparticles in 2-Propanol under Laser Irradiation,” J. Phys. Chem. B 101, 1322 (1997).
    [25] K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal.Chem. 67, 735 (1995).
    [26] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, “Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles,” J. Am. Chem. Soc. 128, 15980-15981 (2006).
    [27] K. G. Stamplecoskie and J. C. Scaiano, “Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles,” J. Am. Chem. Soc. 132, 1825-1827 (2010).
    [28] M. T. Reetz, and W. Helbig, “Size-Selective Synthesis of Nanostructured Transition Metal Clusters,” J. Am. Chem. Soc.116, 7401 (1994).
    [29] N. A. Dhas, H. Cohen and A. Gredanken, “Sonochemical Synthesis of Molybdenum Oxide and Molybdenum Carbide Silica Nanocomposites,” J. Phys. Chem. B 101, 6834 (1997).
    [30] Z. Deng and C. Mao, “DNA-Templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays,” Nano Letters 3, 1545-1548 (2003).
    [31] H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama and T. Ohtani, “Highly ordered assemblies of Au nanoparticles organized on DNA,” Nano Lett. 3, 1391-1394 (2003).
    [32] L. Dong, T. Hollis, B. A. Connolly, N. G. Wright, B. R. Horrocks, A. Houlton, “DNA-Templated Semiconductor Nanoparticle Chains and Wires,” Adv. Mater. 19, 1748-1751 (2007).
    [33] J. Richter, “Metallization of DNA,” Physica E 16, 157-173 (2002).
    [34] C. F. Monson and A. T. Woolley, “DNA-templated construction of copper nanowires,” Nano Letter 3, 359-363 (2003).
    [35] S. Cui, Y. Liu, Z. Yang and X. Wei, “Construction of silver nanowires on DNA template by an electrochemical technique,” Materials and Design 28, 722-725 (2007).
    [36] M. A. Hayat, “Collodial Gold: Principle, Methods, and Applications,” Academic, San Diego (1989).
    [37] L. P. Ma, J. Liu and Y. Yang, “ Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett.80, 2997–2999 (2002).
    [38] J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma and Y. Yang, “Programmable polymer thin film and non-volatile memory device,” Nature Materials 3, 918-922 (2004).
    [39] J. Ouyang, C. W. Chu, D. Sieves, and Y. Yang, “Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells,” Appl. Phys. Lett. 86, 123507 (2005).
    [40] B. Mukherjeeand M. Mukherjee, “Nonvolatile memory device based on Ag nanoparticle: Characteristics improvement,” Appl. Phys. Lett. 94, 173510 (2009).
    [41] H. K. Henisch, W. R. Smith, “Switching in organic polymer films,” Appl. Phys. Lett. 24, 589 (1974).
    [42] M. Lauters, B. McCarthy, D. Sarid, G. E. Jabbour, “Multilevel conductance switching in polymer films,” Appl. Phys. Lett.89, 013 507 (2006).
    [43] A. K. Mahapatro, R. Agrawal, S. Ghosh, “Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3),” J. Appl. Phys. 96, 3583 (2004).
    [44] W. Tang, H. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. Deng, J. Zhao,
    G. Rao, “Memory Effect and Negative Differential Resistance by Electrode-Induced Two-Dimensional Single-Electron Tunneling in Molecular and Organic Electronic Devices,” Adv. Mater. 17, 2307 (2005).
    [45] R. S. Potember, T. O. Poehler, D. O. Cowan, “Electrical switching and memory phenomena in Cu‐TCNQ thin films,” Appl. Phys. Lett. 34, 405 (1979).
    [46] M. Ouyang, S. M. Hou, H. F. Chen, K. Z. Wang, “A new organic-organic complex thin film with reproducible electrical bistability properties,” Phys. Lett. A 235, 413 (1997).
    [47] A. Prakash, J. Ouyang, J. L. Lin and Y. Yang, “Polymer memory device based on conjugated polymer and gold nanoparticles,” J. Appl. Phys. 100, 054309 (2006).
    [48] 林清偉,「有機非揮發性記憶體之量測與分析」,國立中央大學電機工程研究所碩士論文,97年6月。
    [49] T. D. Wang, G. Triadafilopoulos, J. M. Crawford, L. R. Dixon, T. Bhandari, P. Sahbaie, S. Friedland, R. Soetikno, and C. H. Contag, “Detection of endogenous biomolecules in Barrett’s esophagus by Fourier transform infrared spectroscopy,” PNAS. 104 , 15864-15869 (2007).
    [50] SantaLucia, J., Jr,“A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics,” Proc. Natl Acad. Sci. USA 95, 1460-1465 (1998).
    [51] http://www.clevios.com/index.php?page_id=1178
    [52] T. W. Lee, O. Kwon, M. G. Kim, S. H. Park, J. Chung, S. Y. Kim, Y. Chung, J. Y. Park, E. Han, D. H. Huh, J. J. Park, and L. Pu, “Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emitting diodes,” Appl. Phys. Lett. 87, 231106 (2005).
    [53] E. Y. H. Teo, Q. D. Ling, Y. Song, Y. P. Tan, W. Wang, E. T. Kang, D. S. H. Chan, C. Zhu, “Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups,” Organic Electronics 7, 173-180 (2006).
    [54] H. T. Lin, Z. Pei and Y. J. Chan, “Carrier Transport Mechanism in a Nanoparticle-Incorporated Organic Bistable Memory Device,” IEEE Elec. Lett. 28, 7 (2007).
    [55] 陳金鑫、黃孝文,“OLED夢幻顯示器”,五南圖書出版公司,2007年12月。
    [56] L. MotteJJ, F. Billoudet and M. P. Pileni, “Self-Assembled Monolayer of Nanosized Particles Differing by Their Sizes,” J. Phys. Chem. 99, 16425-16429 (1995).
    [57] J. Ouyang, C. W. Chu, D. Sieves, and Y. Yang, “Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells,” Appl. Phys. Lett. 86, 123507 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE