簡易檢索 / 詳目顯示

研究生: 陳志豪
Cheng, Zhi-Hao
論文名稱: 應用肝素化纖維素基質調控鹼性纖維母細胞生長因子與轉基因傳遞刺激細胞增生
Application of heparinized cellulose matrices for substrate-mediated bFGF peptide and transgene delivery to stimulate cellular proliferation
指導教授: 湯學成
Tang, Shiue-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 親和性鍵結纖維素生長因子肝素支架轉染
外文關鍵詞: Affinity conjugation, Cellulose, Growth factor, Heparin, Scaffold, Transfection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 纖維素藉由葡萄糖單位共價鍵結,構成一長鏈狀之結構,為最豐沛生物聚合物。並且能恣意改質成具有廣泛之化學與機械特性,以及加工成各式形態與形狀。在生醫材料領域上,纖維素和其衍生物良好之生物相容性已經長久地被認可。在這次實驗中,我們研究使用環氧化合物交聯之肝素化纖維素基質(H-CM)作為親和性基質,結合鹼性纖維母細胞生長因子(bFGF)促進細胞增生與基質調控轉基因傳遞之可能性。我們採用人類纖維母細胞(HT-1080)與人類成骨細胞(Saos-2)作為細胞樣本,證實了肝素化纖維素基質(H-CM)相較於未改質過纖維素基質(CM)顯著地改善細胞貼附。細胞ㄧ經貼附,在基質上之細胞便受到來自於鹼性纖維母細胞生長因子(bFGF)之刺激,誘使其提升細胞增生。此外,我們藉由帶負電荷之肝素化纖維素基質(H-CM)吸附陽離子型複合體(PEI/DNA)於基質表面,發現鹼性纖維母細胞生長因子(bFGF)與肝素(heparin)之親和性鍵結會對於陽離子型複合體(PEI/DNA)透過靜電吸引力固定於基質表面造成些許之妨礙。但是,由於鹼性纖維母細胞生長因子(bFGF)將誘導細胞增生,藉此大幅度改善基質調控陽離子型複合體(PEI/DNA)基因轉染效率。最後,我們同時鍵結鹼性纖維母細胞生長因子(bFGF)與吸附含有鹼性纖維母細胞生長因子之陽離子型複合體(PEI/pcDNA3.1(+)-hbFGF)於肝素化纖維素基質(H-CM),相較於獨自鍵結或吸附有更高之細胞增生速率。我們的研究證明了肝素化纖維素基質(H-CM)為一獨特之材料基質,具有能夠同時調節鹼性纖維母細胞生長因子(bFGF)與含有鹼性纖維母細胞生長因子之陽離子型複合體(PEI/pcDNA3.1(+)-hbFGF)基因傳遞,因此能提供作為組織支架之基質。


    摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 文獻回顧 1 1-1. 生醫材料(biomaterial) 1 1-1-1. 生醫材料簡介與應用 1 1-1-2. 理想生醫材料 1 1-1-3. 生醫材料種類 2 1-1-3-1. 高分子材料 2 1-2. 纖維素(cellulose) 4 1-2-1. 纖維素簡介 4 1-2-2. 纖維素及其衍生物 5 1-2-3. 纖維素應用 6 1-3. 細胞外間質(extracellular matrix, ECM) 8 1-3-1. 醣胺素(glycosaminoglycan, GAGs) 9 1-3-2. 肝素(heparin) 9 1-4. 生長因子(growth factor) 12 1-4-1. 鹼性纖維母細胞生長因子(bFGF) 12 1-5. 基因傳遞(gene delivery) 15 1-5-1. 病毒型載體 15 1-5-2. 非病毒型載體 16 1-6. 研究動機 18 第二章 實驗材料與方法 20 2-1. 實驗材料 20 2-2. 細胞培養 21 2-3. 肝素對細胞貼附之影響分析 21 2-4. 鹼性纖維母細胞生長因子鍵結之定量分析 22 2-5. 鹼性纖維母細胞生長因子鍵結之定性分析 23 2-6. 鹼性纖維母細胞生長因子對細胞增生分析 24 2-7. 基質表面電位之量測 24 2-8. PEI/DNA之陽離子顆粒吸附之定量分析 26 2-9. CyTM3標定DNA吸附之定性分析 26 2-10. 直接與間接基因轉染之定量分析 27 2-11. 鹼性纖維母細胞生長因子對於基因轉染效率之定量分析 28 2-12. 鹼性纖維母細胞生長因子對於基因轉染效率之定性分析 29 2-13. 結合生長因子與基因傳遞對於細胞增生分析 30 第三章 結果與討論 32 3-1. 巨觀與微觀H-CM 32 3-2. 肝素對細胞貼附之影響 32 3-3. 鹼性纖維母細胞生長因子鍵結定量與定性分析 33 3-4. 鹼性纖維母細胞生長因子對細胞增生效應 35 3-5 肝素化纖維素基質與未改質過纖維素基質之表面電位 36 3-6. DNA吸附於基質之定量與定性分析 36 3-7. 直接與間接接觸對於基因轉染之定量分析 37 3-8. 鹼性纖維母細胞生長因子對於基因轉染效率之定量及定性分析 38 3-9. 結合生長因子與基因傳遞對於細胞增生分析 39 第四章 結論 50 第五章 未來展望 51 第六章 參考文獻 53 第七章 附錄 58

    [1]. E Eisenbarth. Biomaterials for tissue engineering. Advanced Engineering Materials 9 (2007) 1051-1060
    [2]. IY Kim, SJ Seo, HS Moon, MK Yoo, IY Park, BC Kim, CS Cho. Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances 26 (2008) 1-21
    [3]. PX Ma. Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews 60 (2008) 184-198
    [4]. Z Ma, Z Mao, C Gao. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces 60 (2007) 137-157
    [5]. A Svensson, E Nicklasson, T Harrah, B Panilaitis, DL Kaplan, M Brittberg, P Gatenholm. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26 (2005) 419-431
    [6]. R Stoop. Smart biomaterials for tissue engineering of cartilage. International Journal of The Care of The Injured 39 (2008) S77-S87
    [7]. AC O'sullivan. Cellulose: the structure slowly unravels. Cellulose 4 (1997) 173-207
    [8]. P Baldrian. Degradation of cellulose by basidiomycetousfungi. FEMS Microbiol Reviews 32 (2008) 501-521
    [9]. FA Muller, L Muller, I Hofmann, P Greil, MM Wenzel, R Staudenmaier. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27 (2006) 3955-3963
    [10]. E Kontturi, T Tammelin, M Osterberg. Cellulose—model films and the fundamental approach. The Royal Society of Chemistry 35 (2006) 1287-1304
    [11]. M Martson, J Viljanto, T Hurme, P Laippala, P Saukko. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20 (1999) 1989-1995
    [12]. E Entcheva, H Bien, L Yin, CY Chung, M Farrell, Y Kostov. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25 (2004) 5753-5762
    [13]. WK Czaja, DJ Young, M Kawecki, RM Brown. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8 (2007) 1-12
    [14]. WK Czaja, A Krystynowicz, S Bielecki, RM Brown. Microbial cellulose—the natural power to heal wounds. Biomaterials 27 (2006) 145-151
    [15]. H Backdahl, G Helenius, A Bodin, U Nannmark, BR Johansson, B Risberg, P Gatenholm. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27 (2006) 2141-2149
    [16]. D Klemm, D Schumann, U Udhardt, S Marsch. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science 26 (2001) 1561-1603
    [17]. T Ito, Y Yeo, CB Highley, E Bellas, CA Benitez, DS Kohane. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28 (2007) 975-983
    [18]. V Rosilio, G Albrecht, A Baszkin, L Merle. Surface properties of hydrophobically modified carboxymethylcellulose derivatives. Effect of salt and proteins. Colloids and Surfaces B: Biointerfaces 19 (2000) 163-172
    [19]. E Velzenberger, M Vayssade, G Legeay, MD Nagel. Study of cell behaviour on a cellulose anti-adhesive substratum. Cellulose 15 (2008) 347-357
    [20]. HS Barud, AM de Araujo, DB Santos, RMN de Assuncao, CS Meireles, DA Cerqueira, GR Filho, CA Ribeiro, Y Messaddeq, SJL Ribeiro. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta 471 (2008) 61-69
    [21]. PL Granja, BD Jeso, R Bareille, F Rouais, C Baquey, MA Barbosa. Cellulose phosphates as biomaterials. In vitro biocompatibility studies. Reactive and Functional Polymers 66 (2006) 728-739
    [22]. FC Kung, WL Chou, MC Yang. In vitro evaluation of cellulose acetate hemodialyzer immobilized with heparin. Polymers for Advanced Technologies 17 (2006) 453-462
    [23]. 陳彥霖 應用於軟骨組織工程的醣胺素/幾丁聚醣材料開發及其對軟骨細胞之表型及基因表現的影響, 博士論文 (2007)
    [24]. SF Badylak. The extracellular matrix as a biologic scaffold material. Biomaterials 28 (2007) 3587-3593
    [25]. M Bernfield, M Götte, PW Park, O Reizes, ML Fitzgerald, J Lincecum, M Zako. Functions of cell surface heparan sulfate proteoglycans. Annual Review of Biochemistry 68 (1999) 729-777
    [26]. A Verrecchio, MW Germann, BP Schick, B Kung, T Twardowski, JDS Antonio. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. The Journal of Biological Chemistry 275 (2000) 7701-7707
    [27]. YL Chen, HC Chen, HP Lee, HY Chan, YC Hu. Rational development of GAG-augmented chitosan membranes by fractional factorial design methodology. Biomaterials 27 (2006) 2222-2232

    [28]. YL Chen, HP Lee, HY Chan, LY Sung, HC Chen, YC Hu. Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials 28 (2007) 2294-2305
    [29]. CC Tsai, Y Chang, HW Sung, JC Hsu, CN Chen. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study. Biomaterials 22 (2001) 523-533
    [30]. HJ Chung, HK Kim, JJ Yoon, TG Park. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharmaceutical Research 23 (2006) 1835-1841
    [31]. JM Chupa, AM Foster, SR Sumner, SV Madihally, HWT Matthew. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials 21 (2000) 2315-2322
    [32]. N Flint, FL Cove, GS Evans. Heparin stimulates the proliferation of intestinal epithelial cells in primary culture. Journal of Cell Science 107 (1994) 401-411
    [33]. MJB Wissink, R Beernink, JS Pieper, AA Poot, GHM Engbers, T Beugeling, WG van Aken, J Feijen. Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials 22 (2001) 2291-2299
    [34]. I Wilcke, JA Lohmeyer, S Liu, A Condurache, S Krüger, P Mailänder, HG Machens. VEGF165 and bFGF protein-based therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo. Langenbeck's Archives of Surgery. 392 (2007) 305-314
    [35]. A Jurjus, BS Atiyeh, IM Abdallah, RA Jurjus, SN Hayek, MA Jaoude, A Gerges, RA Tohme. Pharmacological modulation of wound healing in experimental burns. Burns 33 (2007) 892-907
    [36]. S Barrientos, O Stojadinovic, MS Golinko, H Brem, M Tomic-Canic. Growth factors and cytokines in wound healing. Wound Repair and Regeneration 16 (2008) 585-601
    [37]. I Ono, Y Akasaka, R Kikuchi, A Sakemoto, T Kamiya, T Yamashita, K Jimbow. Basic fibroblast growth factor reduces scar formation in acute incisional wounds. Wound Repair and Regeneration 15 (2007) 617-623
    [38]. FM Andreopoulos, I Persaud. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials 27 (2006) 2468-2476

    [39]. MS Park, SS Kim, SW Cho, CY Choi, BS Kim. Enhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factor. Journal of Biomedical Materials Research Part B: Applied Biomaterials (2006) 353-359
    [40]. NN Nissen, R Shankar, RL Gamelli, A Singh, LA Dipietro. Heparin and heparan sulphate protect basic fibroblast growth factor from non-enzymic glycosylation. Biochemical Journal 338 (1999) 637-642
    [41]. Y Numata, T Terui, R Okuyama, N Hirasawa, Y Sugiura, I Miyoshi, T Watanabe, A Kuramasu, H Tagami, H Ohtsu. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. Journal of Investigative Dermatology 126 (2006) 1403-1409
    [42]. W Zhao, Q Han, H Lin, Y Gao, W Sun, Y Zhao, B Wang, B Chen, Z Xiao, J Dai. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin. Journal of Molecular Medicine 86 (2008) 1127-1138
    [43]. K Doi, T Ikeda, A Marui, T Kushibiki, Y Arai, K Hirose, Y Soga, A Iwakura, K Ueyama, K Yamahara, H Itoh, K Nishimura, Y Tabata, M Komeda. Enhanced angiogenesis by gelatin hydrogels incorporating basic fibroblast growth factor in rabbit model of hind limb ischemia. Heart Vessels 22 (2007) 104-108
    [44]. J Guan, JJ Stankus, WR Wagner. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. Journal of Controlled Release 120 (2007) 70-78
    [45]. P Smith, FD Shuler, HI Georgescu, SC Ghivizzani, B Johnstone, C Niyibizi, PD Robbins, CH Evans. Genetic enhancement of matrix synthesis by articular chondrocytes - Comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis and Rheumatism 43 (2000) 1156-1164
    [46]. Y Fujihara, H Koyama, N Nishiyama, T Eguchi, T Takato. Gene transfer of bFGF to recipient bed improves survival of ischemic skin flap. British Journal of Plastic Surgery 58 (2005) 511-517
    [47]. SH Lim, IC Liao, KW Leong. Nonviral gene delivery from nonwoven fibrous scaffolds fabricated by interfacial complexation of polyelectrolytes. Molecular Therapy 13 (2006) 1163-1172
    [48]. LD Laporte, JC Rea, LD Shea. Design of modular non-viral gene therapy vectors. Biomaterials 27 (2006) 947-954

    [49]. Z Bengali, LD Shea. Gene delivery by immobilization to cell-adhesive substrates. MRS Bulletin 30 (2005) 659-662
    [50]. LD Laporte, LD Shea. Matrices and scaffolds for DNA delivery in tissue engineering. Advanced Drug Delivery Reviews 59 (2007) 292-307
    [51]. AK Pannier, LD Shea. Controlled release systems for DNA delivery. Molecular Therapy 10 (2004) 19-26
    [52]. H Aihara, J Miyazaki. Gene transfer into muscle by electroporation in vivo. Nature Biotechnology 16 (1998) 867-870
    [53]. SCD Smedt, J Demeester, WE. Hennink. Cationic polymer based gene delivery systems. Pharmaceutical Research 17 (2000) 113-126
    [54]. H Storrie, DJ Mooney. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews 58 (2006) 500-514
    [55]. AP Marques, RL Reis, JA Hunt. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23 (2002) 1471-1478
    [56]. ZH Wang, WC Chien, TW Yue, SC Tang. Application of heparinized cellulose affinity membranes in recombinant adeno-associated virus serotype 2 binding and delivery. Journal of Membrane Science 310 (2008) 141-148
    [57]. SJ Tseng, CJ Chuang, SC Tang. Electrostatic immobilization of DNA polyplexes on small intestinal submucosa for tissue substrate-mediated transfection. Acta Biomaterialia 4 (2008) 799-807
    [58]. 簡煒哲 應用肝素化纖維素基質對未純化之第二型重組腺病毒溶液進行吸附與轉導, 碩士論文 (2007)
    [59]. 王志豪 利用肝素化的纖維素基質吸附第二型重組腺病毒並進行局部基因傳導, 碩士論文 (2008)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE