研究生: |
邱志一 Chiou,Jr-Yi |
---|---|
論文名稱: |
穩健技術服務平台規劃基於公司競爭優勢與未來市場趨勢:以晶圓代工廠為例 A Robust Technical Service Platform Planning Based on Company Competitive Advantage and Future Market Trend: A Case Study of IC Foundry |
指導教授: |
邱銘傳
Chiu,Ming-Chuan |
口試委員: |
朱詣尹
Chu,Yee-Yeen 孫嘉祈 Sun,Chia-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 技術服務平台設計 、技術預測 、徑相基底函數 、模糊權重法 、三維積體電路 |
外文關鍵詞: | Technical Service Platform Design, Technology Forecasting, Radial Basis Function (RBF), Fuzzy Weights, 3-Dimension Integrated Circuit (3D-IC) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發展獨特的競爭優勢,並符合未來發展趨向,已成為公司能在全球市場中獲得競爭力的一種策略。技術服務平台設計可以透過整合多元化的產品和技術,來提高客戶滿意度。過去的研究很少提及發展技術服務平台的方法,以及相關的架構,這樣的發現正好促使了本研究的產生。因此,本篇研究提出了一個多步驟的方法,基於企業核心競爭力來組織技術服務平台,同時在平台的開發過程中結合技術能力。本篇研究以一間晶圓代工廠為例,展現其當前優勢,援引其開發三維積體電路的歷程來以供半導體業參考。本篇研究共評估六個方案,以符合市場的需求。結果顯示,這間公司應著重在邏輯、類比和記憶體積體電路平台的開發,這些方案能較有效的從核心競爭力發展。此外研究結果也顯示,該公司有能力提供三維積體電路設計、堆疊和組裝的相關技術,從上游到下游提供完整的服務,此為未來發展的可能性之一。透過本篇研究的方法,企業可以同時專注於現有及潛在客戶的需要,開發出更多的創新服務,以滿足不同的市場需求,實現規模經濟。決策者亦可透過本篇研究的方法,確定可行的方案。而相關的情境分析則可在不確定情況下,提供決策者面對未來情況的解決方案。綜上所述,透過整合技術服務平台設計和技術預測,可擴展公司核心競爭力,並在未來立於不敗之地。
Developing a unique competitive advantage simultaneously complying with future trends has emerged as a strategy for obtaining competitive advantage in the global marketplace. Technical service platform design can improve customer satisfaction by integrating diversified products and technologies. Prior studies have alluded to developing a framework of technical service platforms and validated methodologies. This finding motivated our research. Hence, we proposed a multi-step approach to organize technical service platforms based on corporate strength while incorporating technological capability during platform development. A case study referencing a company developing 3-Dimension Integrated Circuitry (3D-IC) for the semiconductor industry was presented to demonstrate its advantages. Six alternatives were evaluated to ensure the compliance of our research with market demands. The outcomes presented that the development priorities of this company could be platforms of logic IC, analog IC and memory IC because these platforms can be effectively developed from core competences. In addition, this company also had capability to provide services covering IC design, 3D stacking & assembly, and technical consulting to both upstream customers and downstream partners and this was one of developing strategy. According to our method, enterprises can address existed and potential customer requirements, develop more innovative services to meet different market segments and achieve economies of scale. Decision makers can determine feasible alternatives and scenario analysis can support decision makers to provide solutions for all future situations under uncertainties. Consequently, company strength can be extended and remain invincible in the future through integration of technical service platform design and technology forecasting.
[1] Neely, A. (2008). Exploring the financial consequences of the servitization of manufacturing. Operations Management Research, 1(2), 103-118.
[2] Hobo, M., Watanabe, C., & Chen, C. (2006). Double spiral trajectory between retail, manufacturing and customers leads a way to service oriented manufacturing. Technovation, 26(7), 873-890.
[3] Phaal, R., Farrukh, C., & Probert, D. (2004). Customizing Roadmapping. Engineering Management Review, IEEE, 32(3), 80.
[4] Lei, D., Hitt, M. A., & Bettis, R. (1996). Dynamic core competences through metalearning and strategic context. Journal of Management, 22(4), 549–569.
[5] Barton D L. (1995). Wellsprings of knowledge: Building and sustaining the source of innovation. Long Range Planning, 29(6), 909-909.
[6] Javidan, M. (1998). Core competence: What does it mean in practice? Long Range Planning, 31(1), 60–71.
[7] Mascarenhas, B., Baveja, A., & Jamil, M. (1998). Dynamics of Core Competencies in Leading Multinational Companies. California Management Review, 40(4), 117-132.
[8] Petts, N. (1997). Building growth on core competences – a practical approach. Long Range Planning, 30(4), 551–561.
[9] Hamel, G., & Prahalad, C. K. (1994). Competing for the future. Boston, Mass. : Harvard Business School Press.
[10] Zhang, Y., Shi, Y., & Zhang, P. (2009). Core competencies for commercialising emerging technologies. In The 14th Cambridge International Manufacturing Symposium, Cambridge.
[11] Prahalad, C. K., & Hamel, G. (1990). The core competence of the corporation. Harvard Business Review, 68(3), 79–91.
[12] Wernerfelt, B. (1984). A resource‐based view of the firm. Strategic management journal, 5(2), 171-180.
[13] Penrose, E. T., & Pitelis, C. (2009). The Theory of the Growth of the Firm (4th ed.). Oxford University Press.
[14] Barney, J., Wright, M., & Ketchen, D. J. (2001). The resource-based view of the firm: Ten years after 1991. Journal of management, 27(6), 625-641.
[15] Brockhoff, K. (2003). Exploring strategic R&D success factors. Technology Analysis & Strategic Management, 15(3), 333–348.
[16] Yoon, B., & Park, Y. (2007). Development of new technology forecasting algorithm: hybrid approach for morphology analysis and conjoint analysis of patent information. Engineering Management, IEEE Transactions on, 54(3), 588-599.
[17] Sug, H. (2010). A comparison of RBF networks and random forest in forecasting ozone day. International Journal of Mathematics and Computers in Simulation, 3(4), 59-66.
[18] Huang, C. C., Chu, P. Y., & Chiang, Y. H. (2008). A fuzzy AHP application in government-sponsored R&D project selection. Omega, 36(6), 1038-1052.
[19] Chan, F. T. S., Chan, M. H., & Tang, N. K. H. (2000). Evaluation methodologies for technology selection. Journal of Materials Processing Technology, 107(1), 330-337.
[20] Meade, L. M., & Presley, A. (2002). R&D project selection using the analytic network process. Engineering Management, IEEE Transactions on, 49(1), 59-66.
[21] Postma, T. J., & Liebl, F. (2005). How to improve scenario analysis as a strategic management tool?. Technological Forecasting and Social Change, 72(2), 161-173.
[22] Cheng, A. C., Chen, C. J., & Chen, C. Y. (2008). A fuzzy multiple criteria comparison of technology forecasting methods for predicting the new materials development. Technological Forecasting and Social Change, 75(1), 131-141.
[23] Halal, W. E. (2013). Forecasting the technology revolution: Results and learnings from the TechCast project. Technological Forecasting and Social Change, 80(8), 1635-1643
[24] Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
[25] Vasconcelos Loureiro, A. M., Borschiver, S., & de Andrade Coutinho, P. L. (2010). The Technology Roadmapping Method and its Usage in Chemistry. Journal of technology management & innovation, 5(3), 181-191.
[26] Kostoff, R. N., & Schaller, R. R. (2001). Science and technology roadmaps, IEEE Transactions on Engineering Management, 48(2), 132-143.
[27] Petrick, I. J., & Echols, A. E. (2004). Technology roadmapping in review: A tool for making sustainable new product development decisions. Technological Forecasting and Social Change, 71(1), 81-100.
[28] Gerdsri, N., Assakul, P., & Vatananan, R. S. (2010). An activity guideline for technology roadmapping implementation. Technology Analysis & Strategic Management, 22(2), 229-242.
[29] Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 245-252.
[30] Lee, C., Park, H., & Park, Y. (2013). Keeping abreast of technology-driven business model evolution: a dynamic patent analysis approach. Technology Analysis & Strategic Management, 25(5), 487-505.
[31] Jun, S., Park, S. S., & Jang, D. S. (2012). Technology forecasting using matrix map and patent clustering. Industrial Management & Data Systems, 112(5), 786-807.
[32] Shane, S. (2001). Technological Opportunities and New Firm Creation. Management Science, 47(2), 205.
[33] Moon, S. K., Shu, J., Simpson, T. W., & Kumara, S. R. (2010). A module-based service model for mass customization: service family design. IIE Transactions, 43(3), 153-163.
[34] Jiao, Jianxin, Ma, Qinhai, & Tseng, Mitchell M. (2003). Towards high value-added products and services: mass customization and beyond. Technovation, 23(10), 809-821.
[35] Shooter, Steven B, Simpson, Timothy W, Kumara, Soundar RT, & Stone, Robert B. (2005). Toward a multi-agent information management infrastructure for product family planning and mass customisation. International Journal of Mass Customisation, 1(1), 134-155.
[36] Messac, A., Martinez, M. P., & Simpson, T. W. (2002). Effective product family design using physical programming. Engineering Optimization, 34(3), 245-261.
[37] Park, J., Simpson, T. W., Moon, S. K., & Kumara, S. R. (2008). A dynamic multiagent system based on a negotiation mechanism for product family design. Automation Science and Engineering, IEEE Transactions on, 5(2), 234-244.
[38] Johannesson, H., & Claesson, A. (2005). Systematic product platform design: a combined function-means and parametric modeling approach. Journal of Engineering Design, 16(1), 25-43.
[39] Thevenot, H. J., Alizon, F., Simpson, T. W., & Shooter, S. B. (2007). An Index-based Method to Manage the Tradeoff between Diversity and Commonality during Product Family Design. Concurrent Engineering, 15(2), 127-139.
[40] Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research directions. InternationalJjournal of Production Economics, 72(1), 1-13.
[41] Meyera, M. H., & DeToreb, A. (2001). Perspective: Creating a platform‐based approach for developing new services. Journal of Product Innovation Management, 18(3), 188-204.
[42] Simpson, T. W. (2004). Product platform design and customization: status and promise. AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 18(01), 3-20.
[43] Tseng, M. M., Jiao, R. J., & Wang, C. (2010). Design for mass personalization. CIRP Annals-Manufacturing Technology, 59(1), 175-178.
[44] Hidaka, K. (2006). Trends in services sciences in Japan and abroad. Quarterly review, 19(4), 35-40.
[45] Fitzsimmons, J. A., & Fitzsimmons, M. J. (2004). Service management: Operations, strategy, and information technology (6th ed.).
[46] Stacey, G. S., & Ashton, W. B. (1990). A structured approach to corporate technology strategy. International Journal of Technology Management, 5(4), 389-407.
[47] Ernst, H. (2003). Patent information for strategic technology management. World Patent Information, 25(3), 233-242.
[48] Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). MIT press.
[49] Haykin, S. S. (2007). Neural networks: a comprehensive foundation (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.
[50] Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques (2nd ed.). Morgan Kaufmann.
[51] Chen, L. F., Su, C. T., & Chen, M. H. (2009). A neural-network approach for defect recognition in TFT-LCD photolithography process. Electronics Packaging Manufacturing, IEEE Transactions on, 32(1), 1-8.
[52] Ananda, J., & Herath, G. (2009). A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecological economics, 68(10), 2535-2548.
[53] Belton, V., & Stewart, T. J. (2001). Multiple criteria decision analysis: an integrated approach (1st ed.). Springer.
[54] Edwards, W., & Barron, F. H. (1994). SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes, 60(3), 306-325.
[55] Wang, H. F. (2004). Multicriteria Decision Analysis: From Certainy to Uncertainty (1st ed.). Ting Lung Book.
[56] Bonissone, P. P. (1980, January). A fuzzy sets based linguistic approach: theory and applications. In Proceedings of the 12th conference on Winter simulation, 99-111. IEEE Press.
[57] Chen, S. J., & Hwang, C. L. (1992). Fuzzy Multiple Attribute Decision Making Methods : methods and applications (1st ed.). Springer Berlin Heidelberg.
[58] Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82-85.
[59] Temple, D., Malta, D., Lannon, J. M., Lueck, M., Huffman, A., Gregory, C., Robinson, J. E., Coffman, P. R., Welch, T. B., & Skokan, M. R. (2008). Bonding for 3-D integration of heterogeneous technologies and materials. ECS Transactions, 16(8), 3-13.
[60] Cooper, K. A., Stead, M. D., America, S. N., Lecarpentier, G., Mottet, J. S., & St Jeoire, F. (2010, October). Flip Chip Die Bonding: An Enabling Technology for 3DIC Integration. In Proc International Wafer Level Packaging Conference 2010, 55-59.
[61] Gerlach, G., & Wolter, K. J. (Eds.). (2012). Bio and nano packaging techniques for electron devices: Advances in electronic device packaging (2012 ed.). Springer.
[62] Pavlidis, V. F., & Friedman, E. G. (2010). Three-dimensional integrated circuit design (1st ed.). Morgan Kaufmann.
[63] Li, G., & Shi, J. (2010). On comparing three artificial neural networks for wind speed forecasting. Applied Energy, 87(7), 2313-2320.
[64] Lau, J. H. (2011). Overview and outlook of through-silicon via (TSV) and 3D integrations. Microelectronics International, 28(2), 8-22.
[65] Lakenan, B., Boyd, D., & Frey, E. (2001). Why Cisco fell: outsourcing and its perils. Strategy and Business, 54-65.