簡易檢索 / 詳目顯示

研究生: 李佳叡
Lee, Chia Jui
論文名稱: 奈米鑽石/環氧樹脂複合材料之分散性與機械特性研究
Dispersion and Mechanical Properties of Nanodiamond/Epoxy Composites
指導教授: 葉孟考
Yeh, Meng Kao
戴念華
Tai, Nyan Hwa
口試委員: 蔣長榮
蔡佳霖
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 奈米鑽石分散性機械特性複合材料
外文關鍵詞: Nanodiamond, Dispersion, Mechanical properties, Composites
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合材料是由基材與補強材組成的,環氧樹脂因為其應用範圍廣且價格低,經常被作為複合材料中的基材,再利用補強材提升其機械特性,因此本研究使用環氧樹脂為基材,奈米鑽石作為補強材製備複合材料,以定性與定量分析兩種不同方式,探討不同製程奈米鑽石在環氧樹脂中的分散性,與加入不同比例之奈米鑽石對複合材料撓曲性質與破裂韌性的影響。
    研究結果顯示,超音波震盪機能有效的分散硬化劑中的奈米鑽石,加入0.1wt%奈米鑽石的補強效果最佳,相較於純環氧樹脂。撓曲強度與模數分別提升了2.34% 與12.11%,臨界第一模式應力強度因子提升96.3%。加入0.3 wt%奈米鑽石後複合材料撓曲強度與模數能更進一步提升,強度與模數分別提升10.71%與17.34%,但臨界第一模式應力強度因子無法繼續提升,但仍比純環氧樹脂高了44.1%。透過掃描式電子顯微鏡觀察破裂韌性試片斷面後,發現0.3 wt%複合材料奈米鑽石團聚現象較為明顯,此為臨界第一模式應力強度因子無法繼續提升的原因。有限單元法分析第一模式應力強度因子結果較實驗值高,改變各種參數分析後,發現蒲松比對第一模式應力強度因子影響最大。


    Composites are composed of matrix and reinforcement. Epoxy, due to its wide range of applications and low prices, is often used as a matrix, and its mechanical properties can be enhanced by adding the reinforcement. In this study, nanodiamond/epoxy composites were prepared and qualitative and quantitative analyses are used to investigate the dispersion of nanodiamond/epoxy composites. Also the flexural properties and fracture toughness of nanodiamond/epoxy composites are discussed with different wt% nanodiamond.
    The results show that the dispersion of nanodiamond is improved by using sonication machine to mix the nanodiamond and curing agent. Reinforcement effect achieves to a maximum when 0.1wt% nanodiamond is added. The flexural strength, modulus and the critical mode I stress intensity factor of nanodiamond/epoxy composites with 0.1 wt% nanodiamond increase 2.34%, 12.11% and 96.3%, respectively, when compared with pure epoxy. When 0.3 wt% nanodiamond is added, the flexural strength and modulus increase 10.71% and 17.34%, respectively; the critical mode I stress intensity factor of nanodiamond/epoxy composites improves 44.1%, when compared with pure epoxy. After fracture toughness test, the SEM was used to investigate the fracture surface of nanodiamond/epoxy specimens, and obviously agglomerate nanodiamond in 0.3 wt% nanodiamond/epoxy composites was observed. This is the reason why the critical mode I stress intensity factor could not further increase. Finally, the results of mode I stress intensity factor by finite element analysis is about 40% higher than the experimental results. After examining several parameters, the results show that the Poisson’s ratio has significant influence on the mode I stress intensity factor.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VII 第一章 緒論 1 1.1 文獻回顧 1 1.1.1 奈米鑽石特性 1 1.1.2 環氧樹脂特性 2 1.1.3 複合材料分散性 3 1.2 研究主題 4 第二章 實驗方法與步驟 5 2.1 複合材料組成原料 5 2.1.1 環氧樹脂 5 2.1.2 奈米鑽石 5 2.2 實驗儀器設備 5 2.2.1 機械攪拌機 6 2.2.2 超音波震盪機 6 2.2.3 真空烘箱與真空幫浦 6 2.2.4 熱風循環烤箱 7 2.2.5 熱壓機 7 2.2.6 鑽石切割機 7 2.2.7 電子天秤 7 2.2.8 拉伸試驗機 7 2.2.9 紫外線可見光分光光譜儀 8 2.2.10應變規 8 2.2.11場發射掃描式電子顯微鏡 8 2.3 試片製作 8 2.4 機械性質量測 10 2.4.1 拉伸試驗 11 2.4.2 撓曲試驗 11 2.4.3 破裂韌性試驗 12 2.5 分散性量測 13 2.5.1 量化分散性 13 2.5.2 紫外線可見光分光光譜儀 14 2.6 數據分析 15 2.6.1 數據平均值與標準差 15 2.6.2 Chauvenet’s準則 16 2.6.3 最小平方法 16 2.7試片微結構觀察 17 第三章 有限單元分析 18 第四章 結果與討論 21 4.1 不同製程奈米鑽石/環氧樹脂複合材料分散性 21 4.1.1 量化分散性 21 4.1.2 紫外線可見光分光光譜儀 21 4.2 奈米鑽石/環氧樹脂複合材料撓曲性質 22 4.3 奈米鑽石/環氧樹脂複合材料拉伸性質 23 4.4 奈米鑽石/環氧樹脂複合材料破裂性質 23 4.4.1 不同壓頭速率對臨界第一模式應力強度因子之影響 23 4.4.2 複合材料臨界第一模式應力強度因子 24 4.5 有限單元分析結果 26 4.5.1 收斂性及數值驗證 26 4.5.2 奈米鑽石/環氧樹脂複合材料第一模式應力強度因子 29 4.5.3 改變參數對分析結果之影響 30 第五章 結論與未來展望 33 5.1 結論 33 5.2 未來展望 34 參考文獻 35 圖表 39 附錄 72

    [1] Composite Materials Handbook, Vol. 3: Materials Usage, Design, and Analysis, SAE International, New York, 2002.
    [2] F.C. Campbell, Structural Composite Materials, ASM International, Materials Park, 2010.
    [3] 周靖淳,奈米鑽石刀獵殺癌症細胞之分子機制,國立交通大學生物科技研究所碩士論文,台灣新竹,2009。
    [4] E. Ōsawa, D. Ho, “Nanodiamond and its Application to Drug Delivery,” Medical & Allied Sciences, Vol. 2(2), pp. 31-40, 2012.
    [5] M. R. Ayatollahi, E. Alishahi, S. Shadlou, “Mechanical Behavior of Nanodiamond/ Epoxy Nanocomposites,” Letters in Fracture and Micromechanics, Vol. 170, pp. 95-100, 2011.
    [6] 奈米鑽石粉商品介紹。高雄:宏崴實業有限公司。網址:http://honwaygroup.com/?product=奈米鑽石粉。擷取日期:2015-10-11。
    [7] T. Sharda, S. Bhattacharyya, “Diamond Nanocrystals,” Encyclopaedia of Nanoscience and Nanotechnology, Vol. 2, pp. 337-370, 2004.
    [8] J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, B. H. Houston, “Fabrication of Short-wavelength Photonic Crystals in Wide-band-gap Nanocrystalline Diamond Films,” Journal of Vacuum Science and Technology B,Vol. 24, pp. 50-54, 2006.
    [9] P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, D. Steinmu ̈ller, “Optical Properties of Nanocrystalline Diamond Thin Films,” Applied Physics Letters, Vol. 88, pp. 101908-1 – 101908-3, 2006.
    [10] 張建國,低成本奈米鑽石粉末製造與應用於抗反射及疏水疏油行為之研究,國立台北科技大學機電科技研究所碩士論文,台灣台北,2012。
    [11] V.A. Popov, B.B. Chernov, A.S. Prosviryakov, V.V. Cheverikin, I.I. Khodos, J. Biskupek, U. Kaiser, “New Mechanical-alloying-based Technological Scheme for Producing Electrochemical Composite Coatings Reinforced with Non-agglomerated Nanodiamond Particles,” Journal of Alloys and Compounds, Vol. 615, pp. 433-436, 2014.
    [12] M. R. Ayatollahi, E. Alishahi, S. Doagou-R, S. Shadlou, “Tribological and Mechanical Properties of low Content Nanodiamond/Epoxy Nanocomposites,” Composites: Part B, Vol. 43, pp. 3425-3430, 2012.
    [13] I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, “Mechanical Properties of Epoxy Composites with high Contents of Nanodiamond,” Composites Science and Technology, Vol. 71, pp. 710-716, 2011.
    [14] Y.J. Zhai, Z.C. Wang, W. Huang, J.J. Huang, Y.Y. Wang, Y.Q. Zhao, “Improved Mechanical Properties of Epoxy Reinforced by Low Content Nanodiamond Powder,” Material Science and Engineering A, Vol. 528, pp. 7295-7300, 2011.
    [15] S. A. Rakha, N. Ali, Y. A. Haleem, F. Alam, A.A. Khurrami, A. Munir, “Comparison of Mechanical Properties of Acid and UV Ozone Treated Nanodiamond Epoxy Nanocomposites,” Journal of Materials Science and Technology, Vol. 30, pp. 753-758, 2014.
    [16] F. W. Harri, H. J. Spinelli, “Reactive oligomers,” ACS Symposium Series, Vol. 282, Journal of the American Chemical Society, Washington DC, 1985.
    [17] E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T. W. Chou, R. C. Haddon, “Functionalized Single-walled Carbon Nanotubes for Carbon Fiber-epoxy Composites,” The Journal of Physical Chemistry C, Vol. 111, pp. 17865-17871, 2007.
    [18] H. Miyagawa, A. Mohanty, L. Drzal, M. Misra, “Effect of Clay and Alumina-nanowhisker Reinforcements on the Mechanical Properties of Nanocomposites from Biobased Epoxy: A Comparative Study,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 7001-7009, 2004.
    [19] C. Tseng, C. Wang, “Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-integrated Epoxy Composites,” Chemistry of Materials, Vol. 19, pp. 308-315, 2007.
    [20] A. Chatterjee, M. S. Islam, “Fabrication and Characterization of TiO2-epoxy Nanocomposite,” Materials Science and Engineering A, Vol. 487, pp. 574-585, 2008.
    [21] 林宏澤,醯胺化聚壓克力乳膠顆粒催化環氧樹脂硬化反應研究,國立雲林科技大學化學工程研究所碩士論文,台灣雲林,2005。
    [22] Y. Miyano, M. Nakada, M. K. McMurry, “Influence of Stress Ratio on Fatigue Behavior in the Transverse Direction of Unidirectional CFRPS,” Journal of Composite Materials, Vol. 29, pp. 1808-1815, 1995.
    [23] I. Neitzel, V. N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G. R. Palmese, Y. Gogotsi, “Maximizing Young’s Modulus of Aminated Nanodiamond-epoxy Composites Measured in Compression,” Polymer, Vol. 53, pp. 5965-5971, 2012.
    [24] R. T. Potter, D. Purslow, “The Environmental Degradation of Notched CFRP in Compression,” Composites, Vol. 14, pp. 206-225, 1983.
    [25] A. J. Barker, V. Balasundaram, “Compression Testing of Carbon Fibre-reinforced Plastic Exposed to Humid Environments,” Composites, Vol. 18, pp. 217-226, 1987.
    [26] C. E. Browning, C. E. Husman, J. M. Whitney, “Moisture Effects in Epoxy Matrix Composites,” Composite materials: testing and design, 1978.
    [27] Samsur, R. “Fabrication of Carbon Nanotubes Grown Woven Carbon Fiber/epoxy Composites and Their Electrical and Mechanical Properties,” Journal of Applied Physics, Vol. 113, pp. 214903-1 - 214903-6, 2013.
    [28] 李振緯,奈米鑽石/環氧樹脂複合材料之機械特性研究,國立清華大學動力機械工程學系碩士論文,台灣新竹,2015。
    [29] V. Khoshkava and M. R. Kamal, “Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites,” Biomacromolecules, Vol. 14 (9), pp. 3155–3163, 2013.
    [30] M. V. Baidakova, Y. A. Kukushkina, A. A. Sitnikova, M. A. Yagovkina, D. A. Kirilenko,V. V. Sokolov, M. S. Shestakov, A. Y. Vul, B. Zousman, O. Levinson, “Structure of Nanodiamonds Prepared by Laser Synthesis,” Physics of the Solid State, Vol. 55, pp. 1747-1753, 2013.
    [31] B. M. Tyson, R. K. A. Al-Rub, A. Yazdanbakhsh, Z. Grasley, “A Quantitative Method for Analyzing the Dispersion and Agglomeration of Nano-particles in Composite Materials,” Composites: Part B, vol. 42, pp. 1395-1403, 2011.
    [32] 陳信吉,以熱蒸鍍方式製備銀奈米粒子之研究,南台科技大學電機工程系碩士論文,台灣台南,2006。
    [33] Z. P. Luo, J. H. Koo, “ Quantifying the Dispersion of Mixture Microstructures,” Journal of Microscopy, Vol. 225, pp. 118-125, 2007.
    [34] 周鈞淳,碳氣凝膠對高分子預浸材積層板複合材料之機械性影響,國立清華大學動力機械工程學系碩士論文,台灣新竹,2010。
    [35] 張皓翔,奈米碳管及孔距對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究,國立清華大學動力機械工程學系碩士論文,台灣新竹,2011。
    [36] 蘇皇碩,奈米碳管對碳/碳複合材料機械性質與物理性質之影響,國立清華大學動力機械工程學系碩士論文,台灣新竹,2010。
    [37] R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 2007.
    [38] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [39] ASTM E132-04, “Standard Test Method for Poisson’s Ratio at Room Temperature,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [40] ASTM D790-10, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [41] ASTM D5045-14, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annual Book of ASTM Standards, Vol. 8.2, 2014.
    [42] S. R. Pandya, M. Singh, “Dispersion and Optical Activities of newly Synthesized Magnetic Nanoparticles with Organic Acids and Dndrimers in DMSO Studied with UV/vis Spectrophotometry,” Journal of Molecular Liquids, Vol. 211, pp. 146-156, 2015.
    [43] J. W. Dally, W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
    [44] ANSYS Release 12.1, ANSYS, Inc., 2009.
    [45] C. R. Chiang, “Stress Concentration Factors of Edge-notched Orthotropic Plates, ” Journal of Strain Analysis, Vol. 33, No. 5, pp. 395-398, 1998.
    [46] S. Chandrasekaran, N. Sato, F. Tölle, R, Mülhaupt, B. Fiedler, K. Schulte, ”Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites,” Composites Science and Technology, Vol. 97, pp. 90-99, 2014.
    [47] M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Yu, N. Koratkar, “Fracture and Fatigue in Graphene Nanocomposites,” Small,Vol. 6(2), pp. 179-183, 2010.
    [48] H. Tada, P. C. Paris, G.R . Iwrin, “The Stress Analysis of Cracks Handbook,” 3rd ed, The American Society of Mechanical Engineers, New York, 2000.
    [49] N. Hasebe, Y. Kutanda, “ Calculation of Stress Intensity Factor from Stress Concentration Factor,” Engineering Fracture Machanics, Vol. 10, pp. 215-221, 1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE