研究生: |
李佳叡 Lee, Chia Jui |
---|---|
論文名稱: |
奈米鑽石/環氧樹脂複合材料之分散性與機械特性研究 Dispersion and Mechanical Properties of Nanodiamond/Epoxy Composites |
指導教授: |
葉孟考
Yeh, Meng Kao 戴念華 Tai, Nyan Hwa |
口試委員: |
蔣長榮
蔡佳霖 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 奈米鑽石 、分散性 、機械特性 、複合材料 |
外文關鍵詞: | Nanodiamond, Dispersion, Mechanical properties, Composites |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合材料是由基材與補強材組成的,環氧樹脂因為其應用範圍廣且價格低,經常被作為複合材料中的基材,再利用補強材提升其機械特性,因此本研究使用環氧樹脂為基材,奈米鑽石作為補強材製備複合材料,以定性與定量分析兩種不同方式,探討不同製程奈米鑽石在環氧樹脂中的分散性,與加入不同比例之奈米鑽石對複合材料撓曲性質與破裂韌性的影響。
研究結果顯示,超音波震盪機能有效的分散硬化劑中的奈米鑽石,加入0.1wt%奈米鑽石的補強效果最佳,相較於純環氧樹脂。撓曲強度與模數分別提升了2.34% 與12.11%,臨界第一模式應力強度因子提升96.3%。加入0.3 wt%奈米鑽石後複合材料撓曲強度與模數能更進一步提升,強度與模數分別提升10.71%與17.34%,但臨界第一模式應力強度因子無法繼續提升,但仍比純環氧樹脂高了44.1%。透過掃描式電子顯微鏡觀察破裂韌性試片斷面後,發現0.3 wt%複合材料奈米鑽石團聚現象較為明顯,此為臨界第一模式應力強度因子無法繼續提升的原因。有限單元法分析第一模式應力強度因子結果較實驗值高,改變各種參數分析後,發現蒲松比對第一模式應力強度因子影響最大。
Composites are composed of matrix and reinforcement. Epoxy, due to its wide range of applications and low prices, is often used as a matrix, and its mechanical properties can be enhanced by adding the reinforcement. In this study, nanodiamond/epoxy composites were prepared and qualitative and quantitative analyses are used to investigate the dispersion of nanodiamond/epoxy composites. Also the flexural properties and fracture toughness of nanodiamond/epoxy composites are discussed with different wt% nanodiamond.
The results show that the dispersion of nanodiamond is improved by using sonication machine to mix the nanodiamond and curing agent. Reinforcement effect achieves to a maximum when 0.1wt% nanodiamond is added. The flexural strength, modulus and the critical mode I stress intensity factor of nanodiamond/epoxy composites with 0.1 wt% nanodiamond increase 2.34%, 12.11% and 96.3%, respectively, when compared with pure epoxy. When 0.3 wt% nanodiamond is added, the flexural strength and modulus increase 10.71% and 17.34%, respectively; the critical mode I stress intensity factor of nanodiamond/epoxy composites improves 44.1%, when compared with pure epoxy. After fracture toughness test, the SEM was used to investigate the fracture surface of nanodiamond/epoxy specimens, and obviously agglomerate nanodiamond in 0.3 wt% nanodiamond/epoxy composites was observed. This is the reason why the critical mode I stress intensity factor could not further increase. Finally, the results of mode I stress intensity factor by finite element analysis is about 40% higher than the experimental results. After examining several parameters, the results show that the Poisson’s ratio has significant influence on the mode I stress intensity factor.
[1] Composite Materials Handbook, Vol. 3: Materials Usage, Design, and Analysis, SAE International, New York, 2002.
[2] F.C. Campbell, Structural Composite Materials, ASM International, Materials Park, 2010.
[3] 周靖淳,奈米鑽石刀獵殺癌症細胞之分子機制,國立交通大學生物科技研究所碩士論文,台灣新竹,2009。
[4] E. Ōsawa, D. Ho, “Nanodiamond and its Application to Drug Delivery,” Medical & Allied Sciences, Vol. 2(2), pp. 31-40, 2012.
[5] M. R. Ayatollahi, E. Alishahi, S. Shadlou, “Mechanical Behavior of Nanodiamond/ Epoxy Nanocomposites,” Letters in Fracture and Micromechanics, Vol. 170, pp. 95-100, 2011.
[6] 奈米鑽石粉商品介紹。高雄:宏崴實業有限公司。網址:http://honwaygroup.com/?product=奈米鑽石粉。擷取日期:2015-10-11。
[7] T. Sharda, S. Bhattacharyya, “Diamond Nanocrystals,” Encyclopaedia of Nanoscience and Nanotechnology, Vol. 2, pp. 337-370, 2004.
[8] J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, B. H. Houston, “Fabrication of Short-wavelength Photonic Crystals in Wide-band-gap Nanocrystalline Diamond Films,” Journal of Vacuum Science and Technology B,Vol. 24, pp. 50-54, 2006.
[9] P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, D. Steinmu ̈ller, “Optical Properties of Nanocrystalline Diamond Thin Films,” Applied Physics Letters, Vol. 88, pp. 101908-1 – 101908-3, 2006.
[10] 張建國,低成本奈米鑽石粉末製造與應用於抗反射及疏水疏油行為之研究,國立台北科技大學機電科技研究所碩士論文,台灣台北,2012。
[11] V.A. Popov, B.B. Chernov, A.S. Prosviryakov, V.V. Cheverikin, I.I. Khodos, J. Biskupek, U. Kaiser, “New Mechanical-alloying-based Technological Scheme for Producing Electrochemical Composite Coatings Reinforced with Non-agglomerated Nanodiamond Particles,” Journal of Alloys and Compounds, Vol. 615, pp. 433-436, 2014.
[12] M. R. Ayatollahi, E. Alishahi, S. Doagou-R, S. Shadlou, “Tribological and Mechanical Properties of low Content Nanodiamond/Epoxy Nanocomposites,” Composites: Part B, Vol. 43, pp. 3425-3430, 2012.
[13] I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, “Mechanical Properties of Epoxy Composites with high Contents of Nanodiamond,” Composites Science and Technology, Vol. 71, pp. 710-716, 2011.
[14] Y.J. Zhai, Z.C. Wang, W. Huang, J.J. Huang, Y.Y. Wang, Y.Q. Zhao, “Improved Mechanical Properties of Epoxy Reinforced by Low Content Nanodiamond Powder,” Material Science and Engineering A, Vol. 528, pp. 7295-7300, 2011.
[15] S. A. Rakha, N. Ali, Y. A. Haleem, F. Alam, A.A. Khurrami, A. Munir, “Comparison of Mechanical Properties of Acid and UV Ozone Treated Nanodiamond Epoxy Nanocomposites,” Journal of Materials Science and Technology, Vol. 30, pp. 753-758, 2014.
[16] F. W. Harri, H. J. Spinelli, “Reactive oligomers,” ACS Symposium Series, Vol. 282, Journal of the American Chemical Society, Washington DC, 1985.
[17] E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T. W. Chou, R. C. Haddon, “Functionalized Single-walled Carbon Nanotubes for Carbon Fiber-epoxy Composites,” The Journal of Physical Chemistry C, Vol. 111, pp. 17865-17871, 2007.
[18] H. Miyagawa, A. Mohanty, L. Drzal, M. Misra, “Effect of Clay and Alumina-nanowhisker Reinforcements on the Mechanical Properties of Nanocomposites from Biobased Epoxy: A Comparative Study,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 7001-7009, 2004.
[19] C. Tseng, C. Wang, “Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-integrated Epoxy Composites,” Chemistry of Materials, Vol. 19, pp. 308-315, 2007.
[20] A. Chatterjee, M. S. Islam, “Fabrication and Characterization of TiO2-epoxy Nanocomposite,” Materials Science and Engineering A, Vol. 487, pp. 574-585, 2008.
[21] 林宏澤,醯胺化聚壓克力乳膠顆粒催化環氧樹脂硬化反應研究,國立雲林科技大學化學工程研究所碩士論文,台灣雲林,2005。
[22] Y. Miyano, M. Nakada, M. K. McMurry, “Influence of Stress Ratio on Fatigue Behavior in the Transverse Direction of Unidirectional CFRPS,” Journal of Composite Materials, Vol. 29, pp. 1808-1815, 1995.
[23] I. Neitzel, V. N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G. R. Palmese, Y. Gogotsi, “Maximizing Young’s Modulus of Aminated Nanodiamond-epoxy Composites Measured in Compression,” Polymer, Vol. 53, pp. 5965-5971, 2012.
[24] R. T. Potter, D. Purslow, “The Environmental Degradation of Notched CFRP in Compression,” Composites, Vol. 14, pp. 206-225, 1983.
[25] A. J. Barker, V. Balasundaram, “Compression Testing of Carbon Fibre-reinforced Plastic Exposed to Humid Environments,” Composites, Vol. 18, pp. 217-226, 1987.
[26] C. E. Browning, C. E. Husman, J. M. Whitney, “Moisture Effects in Epoxy Matrix Composites,” Composite materials: testing and design, 1978.
[27] Samsur, R. “Fabrication of Carbon Nanotubes Grown Woven Carbon Fiber/epoxy Composites and Their Electrical and Mechanical Properties,” Journal of Applied Physics, Vol. 113, pp. 214903-1 - 214903-6, 2013.
[28] 李振緯,奈米鑽石/環氧樹脂複合材料之機械特性研究,國立清華大學動力機械工程學系碩士論文,台灣新竹,2015。
[29] V. Khoshkava and M. R. Kamal, “Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites,” Biomacromolecules, Vol. 14 (9), pp. 3155–3163, 2013.
[30] M. V. Baidakova, Y. A. Kukushkina, A. A. Sitnikova, M. A. Yagovkina, D. A. Kirilenko,V. V. Sokolov, M. S. Shestakov, A. Y. Vul, B. Zousman, O. Levinson, “Structure of Nanodiamonds Prepared by Laser Synthesis,” Physics of the Solid State, Vol. 55, pp. 1747-1753, 2013.
[31] B. M. Tyson, R. K. A. Al-Rub, A. Yazdanbakhsh, Z. Grasley, “A Quantitative Method for Analyzing the Dispersion and Agglomeration of Nano-particles in Composite Materials,” Composites: Part B, vol. 42, pp. 1395-1403, 2011.
[32] 陳信吉,以熱蒸鍍方式製備銀奈米粒子之研究,南台科技大學電機工程系碩士論文,台灣台南,2006。
[33] Z. P. Luo, J. H. Koo, “ Quantifying the Dispersion of Mixture Microstructures,” Journal of Microscopy, Vol. 225, pp. 118-125, 2007.
[34] 周鈞淳,碳氣凝膠對高分子預浸材積層板複合材料之機械性影響,國立清華大學動力機械工程學系碩士論文,台灣新竹,2010。
[35] 張皓翔,奈米碳管及孔距對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究,國立清華大學動力機械工程學系碩士論文,台灣新竹,2011。
[36] 蘇皇碩,奈米碳管對碳/碳複合材料機械性質與物理性質之影響,國立清華大學動力機械工程學系碩士論文,台灣新竹,2010。
[37] R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 2007.
[38] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[39] ASTM E132-04, “Standard Test Method for Poisson’s Ratio at Room Temperature,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[40] ASTM D790-10, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[41] ASTM D5045-14, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annual Book of ASTM Standards, Vol. 8.2, 2014.
[42] S. R. Pandya, M. Singh, “Dispersion and Optical Activities of newly Synthesized Magnetic Nanoparticles with Organic Acids and Dndrimers in DMSO Studied with UV/vis Spectrophotometry,” Journal of Molecular Liquids, Vol. 211, pp. 146-156, 2015.
[43] J. W. Dally, W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
[44] ANSYS Release 12.1, ANSYS, Inc., 2009.
[45] C. R. Chiang, “Stress Concentration Factors of Edge-notched Orthotropic Plates, ” Journal of Strain Analysis, Vol. 33, No. 5, pp. 395-398, 1998.
[46] S. Chandrasekaran, N. Sato, F. Tölle, R, Mülhaupt, B. Fiedler, K. Schulte, ”Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites,” Composites Science and Technology, Vol. 97, pp. 90-99, 2014.
[47] M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Yu, N. Koratkar, “Fracture and Fatigue in Graphene Nanocomposites,” Small,Vol. 6(2), pp. 179-183, 2010.
[48] H. Tada, P. C. Paris, G.R . Iwrin, “The Stress Analysis of Cracks Handbook,” 3rd ed, The American Society of Mechanical Engineers, New York, 2000.
[49] N. Hasebe, Y. Kutanda, “ Calculation of Stress Intensity Factor from Stress Concentration Factor,” Engineering Fracture Machanics, Vol. 10, pp. 215-221, 1978.