研究生: |
金子剛 Chin, Tzu-Kang |
---|---|
論文名稱: |
原子層沉積法製備奈米鉑觸媒與新穎載體應用於燃料電池 Fabrication of Platinum Catalyst and Novel Supports by Atomic Layer Deposition for Fuel Cell Application |
指導教授: |
彭宗平
Perng, Tsong-Pyng |
口試委員: |
葉君棣
Yeh, Chuin-Tih 卓君珮 Cho, Chun-Pei 陳燦耀 Chen, Tsan-Yao 王致傑 Wang, Chih-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 172 |
中文關鍵詞: | 原子層沉積 、鉑觸媒 、燃料電池 |
外文關鍵詞: | Atomic layer deposition, Platinum catalyst, Fuel cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
十八世紀工業革命以來,人類文明的發展相當倚重煤、石油、天然氣等化石能源。然而因其存量有限,在不久的將來化石能源或將耗盡。台灣本身化石能源主要仰賴進口,發展替代能源與降低化石燃料依賴,實是刻不容緩的課題。氫能源乃是取代化石能源的方案之一。氫能經濟以氫氣為能源載體,利用可重複性能源,如太陽能、風力、地熱等,將其轉化的電能具有零碳排放特性。因為質子交換膜燃料電池(PEMFC)具有高效率、低汙染等優異性能,未來有可能取代內燃機,做為車用動力的主要來源。然而因鉑(Pt)觸媒的成本居高不下與產量有限,如何降低用量、提高陰極活性、增加持久性,實為質子交換膜燃料電池商業化的課題與挑戰。
本論文研究亦以上述目標為前提,以原子層沉積(atomic layer deposition, ALD)技術製備高活性鉑觸媒與新穎奈米結構支撐材,取代傳統之溼式化學還原鉑觸媒與碳黑載體。本論文分為三部分,針對原子層沉積鉑觸媒製程、新穎支撐材合成、鉑沉積於不同材料表面的現象,進行研究。第一部分中,比較水平流場(horizontal-flow)與垂直強制流場(vertical force-flow)反應腔體,研究對鍍層基材與鍍覆量的影響。並利用垂直強制流場,提高鉑前驅物的使用效率、降低腐蝕性副產物對支撐材的氧化,並沉積3奈米鉑觸媒於導電氮氧化鈦(TiOxN1-x)奈米顆粒支撐材,其氧氣還原活性(ORR)優於濕式化學還原之鉑觸媒,且氧還原活性與持久性均優於商用材(E-tek)。第二部分利用水平流原子層沉積技術製備二氧化鈦(TiO2)鍍層於聚碸高分子中空多孔纖維,之後進行不同階段熱處理,移除聚碸高分子中空多孔纖維,並予以氮化處理,製備導電多孔氮氧化鈦及氮化鈦(TiN)奈米結構,研究結果顯示二氧化鈦金紅石相(rutile)含量越少及氮化溫度愈高,愈容易形成氮化鈦。並進一步以垂直強制流場鍍覆鉑奈米顆粒於多孔氮氧化鈦與氮化鈦奈米結構,其氧還原活性均高於商用材,尤其是以三十次循環製備出的3奈米鉑鍍覆在多孔氮氧化鈦上,其氧活化半電位(E1/2)達0.874 V。此外若對鍍覆二氧化鈦的聚碸中空多孔奈米纖維直接進行氮化處理,因沉積之二氧化鈦鍍層具有高緻密性,可抵擋高溫氮化時的型變,聚碸之中空多孔奈米纖維之形貌與交連結構(interconnected nanostructure)在氮化後均被保留,且隨不同氮化溫度而轉變成氮氧化鈦或氮化鈦,而聚碸則被碳化,而得到氮氧化鈦與碳、氮化鈦與碳之奈米分層結構,並仍維持中空多孔纖維形貌。若以氮氧化鈦與碳或氮化鈦與碳之複合材做為奈米鉑載體,其氧還原活性均優於以碳黑為載體之鉑觸媒與商用材。第三部分則先製備鎳奈米蜂巢結構(Ni nanohoneycomb structure),在予以進行氬氣處理(400 oC),以及利用水平流場比較在不同基材原子層沉積鉑的成長行為,研究基材表面特性對原子層沉積鉑鍍覆量的影響,發現熱處理後的鎳奈米蜂巢結構有較高的鉑鍍覆量與均一性。
Since the industrial revolution in the eighteenth century, the development of new technologies has relied heavily on fossil energies such as coal, petroleum, and natural gas. However, due to the limited reserves, fossil fuels may be exhausted in the near future. Hydrogen energy is one of the solutions to replace fossil energy. The hydrogen energy economy utilizes hydrogen as the energy carrier. By using renewable energy sources, e.g., solar energy, wind power, and geothermal energy, the conversion to electricity is a zero-carbon emission process. Because proton exchange membrane fuel cell (PEMFC) bears with high efficiency and low pollution, it is highly anticipated to replace the internal combustion engine as a power source for vehicles in the future. However, due to high cost and limited reserves of platinum (Pt), reducing the loading, improving the cathode activity, and increasing the durability are the challenges for the commercialization of PEMFC.
Atomic layer deposition (ALD) technique was employed to fabricate Pt catalyst and alternative support materials in this study. It is also attempted to replace the Pt prepared by chemical wet reduction. This dissertation is divided into three parts: (1) Employing the horizontal-flow and vertical forced-flow configurations of ALD to investigate the different behaviors of Pt loading on powder substrates. Using vertical forced-flow ALD could enhance the Pt precursor utilization efficiency and protect the support material from forming oxidative byproducts. Moreover, the Pt in a particle size of 3 nm deposited on TiOxN1-x nanoparticles exhibited better oxygen reduction reaction (ORR) activity than those of Pt formed by chemical reduction and commercial E-tek. Its durability was also much better than that of E-tek. (2) The horizontal-flow ALD was used to coat TiO2 on porous polysulfone (PSF) hollow fibers with good uniformity and conformality. Removal of the PSF fibers by thermal treatment and followed by nitridation led to formation of conductive TiOxN1-x and TiN hollow fibers as the support material for Pt. Less rutile phase in the starting material of TiO2 and higher nitridation temperature benefited the formation of TiN. The Pt nanoparticles in a size of 3 nm deposited by vertical forced-flow mode exhibited a high half-wave potential (E1/2) of 0.874 V. Direct nitridation of ALD TiO2-coated PSF hollow fibers at 800 oC and 1000 oC led to the formation of TiOxN1-x@C and TiN@C nanostructures, respectively. Since the ALD of TiO2 bears with high compactness, which can withstand the strain of ripening during nitridation, the hierarchical structures of TiOxN1-x@C and TiN@C were obtained. Moreover, the shape of mesoporous hollow fiber and its interconnected nanostructure were preserved. The ORR activities of Pt deposited by chemical reduction on TiOxN1-x@C and TiN@C were higher than those of Pt on carbon black and commercial JM catalyst. (3) The comparison of ALD of Pt on various Ni nanohoneycomb substrates was made to investigate how the surface species affected the loading and chemical components of Pt. The annealed Ni nanohoneycomb structure showed better affinity for deposition of Pt. The loading and uniformity of Pt on annealed Ni nanohoneycombs were significantly higher than those of Pt on pristine nanohoneycombs.
Chapter 1
[1] https://www.eia.gov/outlooks/archive/ieo16/electricity.php
[2] J. Turner, G Sverdrup, M. Mann, P. Maness, B. Kroposki, M. Ghirardi, R. Evans, and D. Blake, Renewable hydrogen production, Int. J. Energy Res., 32 (2008) 379-407.
[3] https://h-tec-education.com/solar-hydrogen-cycle-house-demo-htec-d111
[4] http://h2gopower.com/blog-post56.html
[5] https://www.degruyter.com/view/j/psr.2017.2.issue-8/psr-2017-0018/psr-2017-0018.xml?lang=en
[6] https://www.automationworld.com/home/blog/13310194/european-fuelcell-technology-features-road-diesel
[7] T. Damberger, Fuel cells for hospitals, J. Power Sources, 71 (1998) 45-50.
[8] https://www.doitpoms.ac.uk/tlplib/fuel-cells/types.php
[9] V. Miikkulainen, M. Leskela, M. Ritala, and R. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends, J. Appl. Phys., 113 (2013) 021301.
[10] J. O’m Bockris, Energy: The solar hydrogen alternative, Halsted Press, Somerest, New Jersey, 1976.
[11] T. Suntola and J. Antson, Method for producing compound this film, U.S. Patent, No 4,058,430 (1977).
[12] https://www.sciencedirect.com/science/article/pii/B9780815520313000089#f0015/
[13] https://blog.lamresearch.com/tech-brief-a-look-at-atomic-layer-deposition-ald/
[14] C.Y. Su, C.C. Wang, Y.C. Hsueh, V. Gurylev, C.C. Kei, and T.P. Perng, Fabrication of highly homogeneous Al-doped TiO2 nanotubes by nanolamination of atomic layer deposition, J. Am. Ceram. Soc., 100 (2017) 4988-4993.
[15] D. Vogler, P. Doe, ALD special report: Where’s the metal, Solid State Technol., 46 (2003) 35.
Chapter 2
[1] https://chem.libretexts.org/Courses/Lakehead_University/CHEM_1110%2F%2F1130/13%3A_Kinetics/13.8%3A_Catalysis
[2] https://www.fuelcellstore.com/blog-section/considerations-for-fuel-cell-design
[3] S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, and C. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, 5 (2017) 1808-1825.
[4] http://electrical-engineering-pics.blogspot.com/2014/10/basic-diagram-of-pemfc-proton-exchange.html
[5] K. Mauritz and R. Moore. State of understanding of Nafion, Chem. Rev., 104 (2004) 4535-4586.
[6] M. Wang, J. Park, S. Kabir, K. Nyerlin, N. Kariuki, H. Lv, V. Stamenkovic, D. Myers, and S. Mauger, Impact of catalyst ink dispersing methodology on fuel cell performance using in-situ x‑ray scattering, ACS Appl. Energy Mater., 2 (2019) 6417-6427.
[7] C. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: Dynamic pore-network modeling, J. Electrochem. Soc., 162 (2015) F1036-F1046.
[8] S. Park, J. Lee, and B. Popov, A review of gas diffusion layer in PEM fuel cells: Materials and designs, Int. J. Hydrogen energy, 37 (2012) 5850-5865.
[9] H. Yang and T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells, Electrochim. Acta, 50 (2005) 3243-3253.
[10] M. Anwar, X. Yan, M. Asghar, N. Husnain, S. Shen, L. Lou, J. Zhang, Recent advances in hybrid support material for Pt‐based electrocatalysts of proton exchange membrane fuel cells, Int J Energy Res., 43 (2019) 2694-2721.
[11] M. Zeng and Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A, 3 (2015) 14942-14962.
[12] Y. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak, B. Fang, and D. Wilkinson, Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals, Energy Environ. Sci., 11 (2018) 258-275.
[13] V. Stamenkovic, B. Fowler, B. Mun, G. Wang, P. Ross, C. Lucas, and N. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 315 (2007) 493-497.
[14] S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. Banis, R. Li, S. Ye, S. Knights, G. Botton, T. Sham, and X. Sun, Single-atom catalysis using Pt/graphene achieved through atomic layer deposition, Scientific Reports, 3 (2013) 1775.
[15] K. Yao, Y. Chen, C. Chao, W. Wang, S. Lien, H. Shih, T. Chen, and K. Weng, Electrical enhancement of DMFC by Pt–M/C catalyst-assisted PVD, Thin Solid Films, 518 (2010) 7225-7228.
[16] T. Maruyama, H. Kondo, R. Ghosh, A. Kozawa, S. Naritsuka, Y. Lizumo, T. Okazzaki, and S. Lijima, Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum, Carbon, 96 (2016) 6-13.
[17] Z. Yan, Z. Xu, J. Yu, and M. Jaroniec, Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyderemoval at room temperature, Environ. Sci. Technol., 49 (2015) 6637-6644.
[18] N. Cheng, M. Banis, J. Liu, A. Riese, S. Mu, R. Li, T. Sham, and X. Sun, Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts, Energy Environ. Sci., 8 (2015) 1450-1455.
[19] T.K. Chin, M.W. Liao, and T.P. Perng, Enabling higher electrochemical activity of Pt nanoparticles uniformly coated on cubic titanium oxynitride by vertical forced-flow atomic layer deposition, J. Power Sources, 434 (2019) 226716.
[20] S. Sharma and B. Pollet, Support materials for PEMFC and DMFC electrocatalysts-A review, J. Power Sources, 208 (2012) 96-119.
[21] M. Terrones, A. Botell-Mendez, J. Campus-Delgado, F. Lopez-Urias, Y. Vega-Cantu, F. Rodriguez-Macias, A. Elias, E. Munoz-Sandoval, A. Cano-Marquez, J. Charlier, and H. Terrones, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today, 5 (2010) 351-372.
[22] D. Wang, C.V. Subban, H. Wang, E. Rus, F.J. DiSalvo, and H.D. Abruna, Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells, J. Am. Chem. Soc., 132 (2010) 10218-10220.
[23] S.Y. Huang, P. Ganesan, S. Park, and B.N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc., 131 (2009) 13898-13899.
[24] L.G.S. Pereira, F.R. Santos, M.E. Pereira, V.A. Paganin, and E.A. Ticianelli, CO tolerance effects of tungsten-based PEMFC anodes, Electrochim. Acta, 51 (2006) 4061-4066.
[25] X. Tian, J. Luo, H. Nan, H. Zou, R. Chen, T. Shu, X. Li, Y. Li, H. Song, S. Liao, and R.R. Adzic, Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction, J. Am. Chem. Soc., 138 (2016) 1575-1583.
[26] Y.M. Chi, M. Mishra, T.K. Chin, W.S. Liu, and T.P. Perng, Fabrication of macroporous/mesoporous titanium nitride structure and its application as catalyst support for proton exchange membrane fuel cell, ACS Appl. Energy Mater., 2 (2019) 398-405.
[27] Y.R. Liu, Y.C. Hsueh, and T.P. Perng, Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell, Int. J. Int. J. Hydrogen Energy, 42 (2017) 10175-10183.
[28] N.Y. Kim, J.H. Lee, J.A. Kwon, S.J. Yoo, J.H. Jang, H.J. Kim, D.H. Lim, and J.Y. Kim, Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction, J. Ind. Eng. Chem., 46 (2017) 298-303.
[29] M. Khalily, H. Eren, S. Akbayrak, H. Susapto, N. Biyikli, S. Ozkar, and M. Guler, Facile synthesis of three-dimensional Pt-TiO2 Nnano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane, Angew. Chem. Int. Ed., 55 (2016) 12257-12261.
[30] J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, and K. Domen, Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template, Chem. Commun., 46 (2010) 7492-7494.
[31] L. Yan, G. Chen, S. Tan, M. Zhou, G. Zou, S. Deng, S. Smirnov, and H. Luo, Titanium oxynitride nanoparticles anchored on carbon nanotubes as energy storage materials, ACS Appl. Mater. Interfaces, 7 (2015) 24212-24217.
[32] https://link.springer.com/referenceworkentry/10.1007%2F978-90-481-9751-4_372
[33] Z. Xue, H. Thridandam, H. Kaesz, and R. Hicks, Organometallic chemical vapor deposition of platinum. Reaction kinetics and vapor pressures of Precursors, Chem. Mater., 4 (1992) 162-166.
[34] K.I. Liu, C.Y. Su, and T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Advances, 5 (2015) 88367.
[35] Titanium tetrachloride - the NIST WebBook
Chapter 3
[1] K. Kordesch and G. Simander, Fuel Cells and Their Applications, first ed., VCH, Germany, 1996, p. 72.
[2] L.J.M. Blomen and M.N. Mugerwa, Fuel Cell Systems, first ed., Plenum Press, New York, 1993, p. 37.
[3] A.L. Dicks, The role of carbon in fuel cells, J. Power Sources, 156 (2006) 128-141.
[4] A. Seifitokaldani, O. Savadogo, Electrochemically stable titanium oxy-nitride support for platinum electro-catalyst for PEM fuel cell applications, Electrochim. Acta, 167 (2015) 237-245.
[5] S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal, Angew. Chem., 123 (2011) 442-446.
[6] T.D. Gould, A.M. Lubers, A.R. Corpuz, A.W. Weimer, J.L. Falconer, J.W. Medlin, Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition, ACS Catal., 5 (2015) 1344-1352.
[7] D. Wang, C.V. Subban, H. Wang, E. Rus, F.J. DiSalvo, H.D. Abruna, Highly stable and CO-Tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells, J. Am. Chem. Soc., 132 (2010) 10218-10220.
[8] S.Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc., 131 (2009) 13898-13899.
[9] L.G.S. Pereira, F.R. Santos, M.E. Pereira, V.A. Paganin, E.A. Ticianelli, CO tolerance effects of tungsten-based PEMFC anodes, Electrochim. Acta, 51 (2006) 4061-4066.
[10] W. Wang, O. Savadogo, Z.F. Ma, The oxygen reduction reaction on Pt/TiOxNy-based electrocatalyst for PEM fuel cell applications, J. Appl. Electrochem., 42 (2012) 857-866.
[11] X. Tan, L. Wang, B. Zahiri, A. Kohandehghan, D. Karpuzov, E.M. Lotfabad, Z. Li, M.H. Eikerling, D. Mitlin, Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt–Ni alloy, ChemSusChem, 8 (2015) 361-376.
[12] X. Tian, J. Luo, H. Nan, H. Zou, R. Chen, T. Shu, X. Li, Y. Li, H. Song, S. Liao, R.R. Adzic, Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction, J. Am. Chem. Soc., 138 (2016) 1575-1583.
[13] Z. Pan, Y. Xiao, Z. Fu, G. Zhan, S. Wu, C. Xiao, G. Hu, Z. Wei, Hollow and porous titanium nitride nanotubes as high-performance catalyst supports for oxygen reduction reaction, J. Mater. Chem. A, 2 (2014) 13966-13975.
[14] H. Shin, H.I. Kim, D.Y. Chung, J.M. Yoo, S. Weon, W. Choi, Y.E. Sung, Scaffold-like titanium nitride nanotubes with a highly conductive porous architecture as a nanoparticle catalyst support for oxygen reduction, ACS. Catal., 6 (2016) 3914-3920.
[15] Y.R. Liu, Y.C. Hsueh, T.P. Perng, Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 42 (2017) 10175-10183.
[16] Y.M. Chi, M. Mishra, T.K. Chin, W.S. Liu, T.P. Perng, Fabrication of macroporous/mesoporous titanium nitride structure and its application as catalyst support for proton exchange membrane fuel cell, ACS Appl. Energy Mater., 2 (2019) 398-405.
[17] N.Y. Kim, J.H. Lee, J.A. Kwon, S.J. Yoo, J.H. Jang, H.J. Kim, D.H. Lim, J.Y. Kim, Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction, J. Ind. Eng. Chem., 46 (2017) 298-303.
[18] M. Drygas, C. Czosnek, R. T. Paine, J. F. Janik, Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology, Chem. Mater., 18 (2006) 3122-3129.
[19] B. Avasarala, P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions, Electrochim. Acta, 55 (2010) 9024-9034.
[20] H. Nan, D. Dang, X.L. Tian, Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction, J. Mater. Chem. A, 6 (2018) 6065-6073.
[21] Q. Liu, L. Du, G. Fu, Z. Cui, Y. Li, D. Dang, X. Gao, Q. Zheng, J.B. Goodenough, Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction, Adv. Energy Mater., 9 (2019) 1803040.
[22] Y. Zheng, J. Zhang, H. Zhan, D. Sun, D. Dang, X.L. Tian, Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction, Electrochem. Commun., 91 (2018) 31-35.
[23] X. Chen, W. Li, Z. Pan, Y. Xu, G. Liu, G. Hu, S. Wu, J. Li, C. Chen, Y. Lin, Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction, Appl. Surf. Sci., 440 (2018) 193-201.
[24] N. Cheng, M.N. Banis, J. Liu, A. Riese, S. Mu, R. Li, T.K. Sham, X. Sun, Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts, Energy Environ. Sci., 8 (2015) 1450-1455.
[25] Y.C. Hsueh, C.C. Wang, C.C. Kei, Y.H. Lin, C. Liu, T.P. Perng, Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells, J. Catal., 294 (2012) 63-68.
[26] C. Liu, C.C. Wang, C.C. Kei, Y.C. Hsueh, T.P. Perng, Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton exchange membrane fuel cell, Small, 5 (2009) 1535-1538.
[27] L. Zhang, Y. Zhao, M.N. Banis, K. Adair, Z. Song, L. Yang, M. Markiewicz, J. Li, S. Wang, R. Li, S. Ye, X. Sun, Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance, Nano Energy, 60 (2019) 111-118.
[28] W.W. McNeary, C. Ngo, A.E. Linico, J.W. Zack, A.M. Roman, K.M. Hurst, S.M. Alia, J.W. Medlin, S. Pylypenko, B.S. Pivovar, A.W. Weimer, Extended thin-film electrocatalyst structures via Pt atomic layer deposition, ACS Appl. Nano Mater., 1 (2018) 6150-6158.
[29] V.C. Anitha, R. Zazpe, M. Krbal, J. Yoo, H. Sopha, J. Prikryl, G. Cha, S. Slang, P. Schmuki, J.M. Macak, Anodic TiO2 nanotubes decorated by Pt nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation, J. Catal., 365 (2018) 86-93.
[30] S. Saha, J.A.C. Rodas, S. Tan, D. Li, Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells, J. Power Sources, 378 (2018) 742-749.
[31] M. Mishra, C.C. Kei, Y.H. Yu, W.S. Liu, T.P. Perng, Uniform coating of Ta2O5 on vertically aligned substrate: A prelude to forced flow atomic layer deposition, Rev. Sci. Instrum., 88 (2017) 065103.
[32] M. Mishra, C.Y. Chan, C.C. Kei, Y.C. Yen, M.W. Liao, T.P. Perng, Forced flow atomic layer deposition of TiO2 on vertically aligned Si wafer and polysulfone fiber: Design and efficacy of conduit plates and soak function, Rev. Sci. Instrum., 89 (2018) 105108.
[33] K.I. Liu, C.C. Kei, M. Mishra, P.H. Chen, W.S. Liu, T.P. Perng, Uniform coating of TiO2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition, RSC Adv., 7 (2017) 34730-34735.
[34] B. Avasarala, P. Haldar, On the stability of TiN-based electrocatalysts for fuel cell applications, Int. J. Hydrogen Energy, 36 (2011) 3965-3974.
[35] V.Y. Ulianitsky, D.V. Dudina, I.S. Batraev, A.I. Kovalenko, N.V. Bulina, B.B. Bokhonov, Detonation spraying of titanium and formation of coatings with spraying atmosphere-dependent phase composition, Surf. Coat. Technol., 261 (2015) 174-180.
[36] D. Dolat, D. Moszynski, N. Guskos, B. Ohtani, A.W. Morawski, Preparation of photoactive nitrogen-doped rutile, Appl. Surf. Sci., 266 (2013) 410-419.
[37] G. Balcerowska-Czerniak, A. Wronkowski, A.J. Antończak, Ł. Skowroński, A.A. Wronkowska, The potential of multivariate analysis to phase identification based on X-ray diffraction patterns, Chemometr. Intell. Lab., 135 (2014) 126-132.
[38] J. Li, B. Zhang, Y. Chen, J. Zhang, H. Yang, J. Zhang, X. Lu, G. Li, Y. Qin, Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition, Catal. Sci. Technol., 5 (2015) 4218-4223.
[39] S.T. Christensen, J.W. Elam, F.A. Rabuffetti, Q. Ma, S.J. Weigand, B. Lee, S. Seifert, P.C. Stair, K.R. Poeppelmeier, M.C. Hersam, M.J. Bedzyk, Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition, Small, 6 (2009) 750-757.
[40] B. Avasarala, P. Haldar, Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications, Energy, 57 (2013) 545-553.
[41] C. Wang, H. Daimon, S. Sun, Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction, Nano Lett., 9 (2009) 1494-1496.
Chapter 4
[1] K. Kordesch and G. Simader, Fuel Cells and Their Applications, first ed., VCH, Germany, 1996, p. 72.
[2] L.J.M.J. Blomen and M.N. Mugerwa, Fuel Cell Systems, first ed., Plenum Press, New York, 1993, p. 37.
[3] A.L. Dicks, The role of carbon in fuel cells, J. Power Sources, 156 (2006) 128-141.
[4] A. Seifitokaldani and O. Savadogo, Electrochemically stable titanium oxy-nitride support for platinum electro-catalyst for PEM fuel cell applications, Electrochim. Acta, 167 (2015) 237-245.
[5] L. Dubau, L. Castanheira, G. Berthomé, and F. Maillard, An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles, Electrochim. Acta, 110 (2013) 273-281.
[6] J.M. Lee, S.B. Han, Y.J. Song, J.Y. Kim, B. Roh, I. Hwang, W. Choi, and K.W. Park, Methanol electrooxidation of Pt catalyst on titanium nitride nanostructured support, Appl. Catal. A: General, 375 (2010) 149-155.
[7] H. Kim, M.K. Cho, J.A. Kwon, Y.H. Jeong, K.J. Lee, N.Y. Kim, M.J. Kim, S.J. Yoo, J.H. Jang, H.J. Kim, S.W. Nam, D.H. Lim, E. Cho, K.Y. Lee, and J.Y. Kim, Highly efficient and durable TiN nanofiber electrocatalyst supports, Nanoscale, 7 (2015) 18429-18434.
[8] F. Yu, Y. Xie, H. Tang, N. Yang, X. Meng, X. Wang, X.L. Tian, and X. Yang, Platinum decorated hierarchical porous structures composed of ultrathin titanium nitride nanoflakes for efficient methanol oxidation reaction, Electrochim. Acta, 264 (2018) 216-224.
[9] Y. Zheng, J. Zhang, H. Zhan, D. Sun, D. Dang, and X.L. Tian, Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction, Electrochem. Commun., 91 (2018) 31-35.
[10] B. Avasarala and P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions, Electrochim. Acta, 55 (2010) 9024-9034.
[11] N.Y. Kim, J.H. Lee, J.A. Kwon, S.J. Yoo, J.H. Jang, H.J. Kim, D.H. Lim, and J.Y. Kim, Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction, J. Ind. Eng. Chem., 46 (2017) 298-303.
[12] N. Cheng, M.N. Banis, J. Liu, A. Riese, S. Mu, R. Li, T.K. Sham, and X. Sun, Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts, Energy Environ. Sci., 8 (2015) 1450-1455.
[13] Y.C. Hsueh, C.C. Wang, C.C. Kei, Y.H. Lin, C. Liu, and T.P. Perng, Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells, J. Catal., 294 (2012) 63-68.
[14] M. Mishra, C.C. Kei, Y.H. Yu, W.S. Liu, and T.P. Perng, Uniform coating of Ta2O5 on vertically aligned substrate: A prelude to forced flow atomic layer deposition, Rev. Sci. Instrum., 88 (2017) 065103.
[15] M. Mishra, C.Y. Chan, C.C. Kei, Y.C. Yen, M.W. Liao, and T.P. Perng, Forced flow atomic layer deposition of TiO2 on vertically aligned Si wafer and polysulfone fiber: Design and efficacy of conduit plates and soak function, Rev. Sci. Instrum., 89 (2018) 105108.
[16] K.I. Liu, C.C. Kei, M. Mishra, P.H. Chen, W.S. Liu, and T.P. Perng, Uniform coating of TiO2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition, RSC Adv., 7 (2017) 34730-34735.
[17] T.K. Chin, M.W. Liao, and T.P. Perng, Enabling higher electrochemical activity of Pt nanoparticles uniformly coated on cubic titanium oxynitride by vertical forced-flow atomic layer deposition, J. Power Sources, 434 (2019) 226716.
[18] H.S. Chen, P.H. Chen, J.L. Kuo, Y.C. Hsueh, and T.P. Perng, TiO2 hollow fibers with internal interconnected nanotubes prepared by atomic layer deposition for improved photocatalytic activity, RSC Adv., 4 (2014) 40482-40486.
[19] C.C. Wang, C.C. Kei, Y.W. Yu, and T.P. Perng, Organic nanowire-templated fabrication of alumina nanotubes by atomic layer deposition, Nano Lett., 7 (2007) 1566-1569.
[20] W.S. Liu, L.C. Wang, T.K. Chin, Y.C. Yen, and T.P. Perng, Fabrication of TiO2 on porous g-C3N4 by ALD for improved solar-driven hydrogen evolution, RSC Adv., 8 (2018) 30642-30651.
[21] R. Aghababazadeh, A.R. Mirhabibi, B. Rand, S. Banijamali, J. Pourasad, and M. Ghahari, Synthesis and characterization of nanocrystalline titanium nitride powder from rutile and anatase as precursors, Surf. Sci., 601 (2007) 2881-2885.
[22] L. Glasser and H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids, J. Am. Chem. Soc., 122 (2000) 632-638.
[23] M. Drygas´, C. Czosnek, R.T. Paine, and J.F. Janik, Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology, Chem. Mater., 18 (2006) 3122-3129.
[24] W.T. Chang, Y.C. Hsueh, S.H. Huang, K.I. Liu, C.C. Kei, and T.P. Perng, Fabrication of Ag-loaded multi-walled TiO2 nanotube arrays and their photocatalytic activity, J. Mater. Chem. A, 1 (2013) 1987-1991.
[25] J. Li, B. Zhang, Y. Chen, J. Zhang, H. Yang, J. Zhang, X. Lu, G. Li, and Y. Qin, Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition, Catal. Sci. Technol., 5 (2015) 4218-4223.
[26] B. P. Vinayan, and S. Ramaprabhu, Platinum–TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications, Nanoscale, 5 (2013) 5109-5118.
[27] C. Liu, C.C. Wang, C.C. Kei, Y.C. Hsueh, and T.P. Perng, Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton exchange membrane fuel cell, Small, 5 (2009) 1535-1538.
[28] L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, and H.R. Jiang, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries, J. Power Sources, 341 (2017) 318-326.
[29] Y. Ren, Z. Ren, J. Li, S. Wang, and J. Yu, Solvothermal synthesis of a dendritic TiNxOy nanostructure for oxygen reduction reaction electrocatalysis, RSC Adv., 5 (2015) 106439.
[30] C. Wang, H. Daimon, and S. Sun, Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction, Nano Lett., 9 (2009) 1494-1496.
[31] X. Tan, L. Wang, B. Zahiri, A. Kohandehghan, D. Karpuzov, E.M. Lotfabad, M.H. Eikerling, and D. Mitlin, Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt–Ni Alloy, ChemSusChem, 8 (2015) 361-376.
Chapter 5
[1] Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science, 304 (2006) 711-714.
[2] J.C. Park, J.U. Bang, J. Lee, C.H. Ko, and H. Song, Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability, J. Mater. Chem., 20 (2010) 1239-1246.
[3] P.M. Arnal, M. Comotti, and F. Schuth, High-temperature-stable catalysts by hollow sphere encapsulation, Angew. Chem. Int. Ed., 45 (2006) 8224-8225.
[4] A. Seifitokaldani and O. Savadogo, Electrochemically stable titanium oxy-nitride support for platinum electro-catalyst for PEM fuel cell applications, Electrochim. Acta, 167 (2015) 237-245.
[5] S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, and X. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal, Angew. Chem. Int. Ed., 123 (2011) 442-446.
[6] D. Wang, C.V. Subban, H. Wang, E. Rus, F.J. DiSalvo, and H.D. Abruna, Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells, J. Am. Chem. Soc., 132 (2010) 10218-10220.
[7] S.Y. Huang, P. Ganesan, S. Park, and B.N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc., 131 (2009) 13898-13899.
[8] L.G.S. Pereira, F.R. Santos, M.E. Pereira, V.A. Paganin, and E.A. Ticianelli, CO tolerance effects of tungsten-based PEMFC anodes, Electrochim. Acta, 51 (2006) 4061-4066.
[9] X. Tian, J. Luo, H. Nan, H. Zou, R. Chen, T. Shu, X. Li, Y. Li, H. Song, S. Liao, and R.R. Adzic, Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction, J. Am. Chem. Soc., 138 (2016) 1575-1583.
[10] Y.M. Chi, M. Mishra, T.K. Chin, W.S. Liu, and T.P. Perng, Fabrication of macroporous/mesoporous titanium nitride structure and its application as catalyst support for proton exchange membrane fuel cell, ACS Appl. Energy Mater., 2 (2019) 398-405.
[11] Y.R. Liu, Y.C. Hsueh, and T.P. Perng, Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell, Int. J. Int. J. Hydrogen Energy, 42 (2017) 10175-10183.
[12] N.Y. Kim, J.H. Lee, J.A. Kwon, S.J. Yoo, J.H. Jang, H.J. Kim, D.H. Lim, and J.Y. Kim, Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction, J. Ind. Eng. Chem., 46 (2017) 298-303.
[13] J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, and K. Domen, Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template, Chem. Commun., 46 (2010) 7492-7494.
[14] L. Yan, G. Chen, S. Tan, M. Zhou, G. Zou, S. Deng, S. Smirnov, and H. Luo, Titanium oxynitride nanoparticles anchored on carbon nanotubes as energy storage materials, ACS Appl. Mater. Interfaces, 7 (2015) 24212-24217.
[15] D.C. Higgins, J.Y. Choi, J. Wu, A. Lopez, and Z. Chen, Titanium nitride–carbon nanotube core–shell composites as effective electrocatalyst supports for low temperature fuel cells, J. Mater. Chem., 22 (2012) 3727-3732.
[16] Y.S. Jun, W.H. Hong, M. Antonietti, and A. Thomas, Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites, Adv. Mater., 21 (2009) 4270-4274.
[17] H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen, Y. Liu, and Y. Huang, Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage, Nano Energy, 10 (2019) 163-171.
[18] S.K. Panda and H. Shin, Step coverage in ALD-in: atomic layer deposition of nanostructured materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 23-40.
[19] R. Cooper, H.P. Upadhyaya, T.K. Minton, M.R. Berman, X. Du, and S.M. George, Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings, Thin Solid Films, 516 (2008) 4036-4039.
[20] C. Liu, C.C. Wang, C.C. Kei, Y.C. Hsueh, and T.P. Perng, Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton exchange membrane fuel cell, Small, 5 (2010) 115-122.
[21] Y.C. Hsueh, C.C. Wang, C.C. Kei, Y.H. Lin, C. Liu, and T.P. Perng, Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells, J. Catal., 294 (2012) 63-68.
[22] K.I. Liu, C.Y. Su, and T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374.
[23] Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, and T.P. Perng, Synthesis and photocatalysis of Ag-loaded TiO2 nanotube arrays, J. Phys. Chem., 115 (2011) 9498-9502.
[24] W.T. Chang, Y.C. Hsueh, S.H. Huang, K.I. Liu, C.C. Kei, and T.P. Perng, Fabrication of Ag-loaded multi-walled TiO2 nanotube arrays and their photocatalytic activity, J. Mater. Chem. A, 1 (2013) 1987-1991.
[25] L. Liu, S.K. Karuturi, L.T. Su, and A.I.Y. Tok, TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications, Energy Environ. Sci., 4 (2011) 209-215.
[26] K.I. Liu, Y.C. Hsueh, H.S. Chen, and T.P. Perng, Mesoporous TiO2/WO3 hollow fibers with interior interconnected nanotubes for photocatalytic application, J. Mater. Chem. A, 2 (2014) 5387-5393.
[27] H.S. Chen, P.H. Chen, J.L. Kuo, Y.C. Hsueh, and T.P. Perng, TiO2 hollow fibers with internal interconnected nanotubes prepared by atomic layer deposition for improved photocatalytic activity, RSC Adv., 4 (2014) 40482-40486.
[28] C.C. Wang, C.C. Kei, Y.W. Yu, and T.P. Perng, Organic nanowire-templated fabrication of alumina nanotubes by atomic layer deposition, Nano Lett., 7 (2007) 1566-1569.
[29] C.Y. Su, C.C. Wang, Y.C. Hsueh, V. Gurylev, C.C. Kei, and T.P. Perng, Enabling high solubility of ZnO in TiO2 by nanolamination of atomic layer deposition, Nanoscale, 7 (2015) 19222-19230.
[30] C.Y. Su, Y.C. Hsueh, V. Gurylev, C.C. Kei, and T.P. Perng, Fabrication of highly homogenous Al-doped TiO2 nanotubes by nanolamination of atomic layer deposition, J. Am. Ceram. Soc., 100 (2017) 4988-4993.
[31] C.Y. Su, L.C. Wang, W.S. Liu, C.C. Wang, and T.P. Perng, Photocatalysis and hydrogen evolution of Al- and Zn-doped TiO2 nanotubes fabricated by atomic layer deposition, ACS Appl. Mater. Interfaces, 10 (2018) 33287-33295.
[32] W.S. Liu, L.C. Wang, T.K. Chin, Y.C. Yen, and T.P. Perng, Fabrication of TiO2 on porous g-C3N4 by ALD for improved solar-driven hydrogen evolution, RSC Adv., 8 (2018) 30642-30651.
[33] W. Luo, B. Wang, C.G. Heron, M.J. Allen, J. Morre, C.S. Maier, W.F. Stickle, and X. Ji, Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation, Nano Lett., 14 (2014) 2225-2229.
[34] S. Hu and Y. Hsieh, Lignin derived activated carbon particulates as an electric supercapacitor: carbonization and activation on porous structures and microstructures, RSC Adv., 7 (2017) 30459-30468.
[35] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, and R. Schlögl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin, Carbon, 40 (2002) 597-608.
[36] K. Mondal, J. Kumar, and A. Sharma, Self-organized macroporous thin carbon films for supported metal catalysis, Colloids and Surfaces A: Physicochem. Eng. Aspects, 427 (2013) 83-94.
[37] T.K. Chin, M.W. Liao, and T.P. Perng, Enabling higher electrochemical activity of Pt nanoparticles uniformly coated on cubic titanium oxynitride by vertical forced-flow atomic layer deposition, J. Power Sources, 434 (2019) 226716.
[38] T.K. Chin, M.W. Liao, and T.P. Perng, Fabrication of porous TiOxN1-x and TiN hollow fibers and deposition of Pt nanoparticles by atomic layer deposition and their enhanced electrochemical activities, J. Mater. Chem. A (submitted).
[39] W. Wang, H. Wang, H. Wang, X. Jin, J. Li, and Z. Zhu, Electrospinning preparation of a large surface area, hierarchically porous, and interconnected carbon nanofibrous network using polysulfone as a sacrificial polymer for high performance supercapacitors, RSC Adv., 8 (2018) 28480-28486.
Chapter 6
[1] K. Kordesch and G. Simader, Fuel Cells and Their Application, first ed., VCH, Germany, 1996, P.72.
[2] L.J.M.J. Blomen and M.N. Mugerwa, Fuel Cell Systems, first ed., Plenum Press, New York, 1993, p. 37.
[3] M. Waje, X. Wang, X. Li, and Y. Yan, Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells, Nanotechnology, 16 (2005) S395.
[4] C. Wang, M. Waje, X. Wang, M. Tang, R. Haddon, and Y. Yan, Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano let., 4 (2004) 345-348.
[5] Z. Ismagilov, M. Kerzhentsev, M. Shikina, N. Lisitsyn, A. Okhlokova, L. Barnakov, C. Sakashita, T. Iijima, K. Tadokoro, Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials, Catalyst Today, 102 (2005) 58-66.
[6] B. Seger and P. Kamat, Electrocatalytically active graphene-platinum nanocomposites role of 2-D carbon support in PEM fuel cells, J. Phys. Chem. C, 113 (2009) 7990-7995.
[7] A. Sahu, P. Sridhar, and S. Pitchumani, Mesoporous carbon for polymer electrolyte fuel cell electrodes, J. Indian Inst. Sci., 89 (2012) 437-445.
[8] W. Chueh, Y. Hao, W. Jung, and S. Haile, High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes, Nat. Mater., 11 (2011) 155-161.
[9] M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev., 116 (2016) 3594-3657.
[10] Z. Shang and X. Liang, Core–Shell nanostructured supported size-selective catalysts with high catalytic activity, Nano Lett., 17 (2017) 104-109.
[11] V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. Wu, J. Kim, and Y. Yamauchi, Nanoarchitectures for mesoporous metals , Adv. Mater., 28 (2016) 993-1010.
[12] H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268 (1995) 1466-1468.
[13] C. Kei, T. Chen, C. Su, C. Lee, C. Hsiao, C. Tsai, S. Chang, T. P. Perng, Preparation of periodic arrays of metallic nanocrystals by using nanohoneycomb as reaction vessel, Chem. Mater., 18 (2006) 4544-4546.
[14] G. Zhang, S. Sun, M. Ionescu, H. Liu, Y. Zhong, R. Li, and X. Sun, Controlled growth/patterning of Ni nanohoneycombs on various desired substrates, Langmuir, 6 (2010) 4346-4350.
[15] C. Wang, C. Kei, and T.P. Perng, Preparation and optical property of TiO2 nanohoneycomb, Jap. J. Appl. Phys., 47 (2008) 757-759.
[16] H. Lin, Y. Pai, J. Shi, X. Chen, C. Lin, C. Weng, T. Chen, C. Lin, M. Charlton, Y. Huang, C. Chen, H. Chen, and H. Kuo, Optimization of nano-honeycomb structures for flexible w-LEDs, Optic Express, 25 (2017) 20466-20476.
[17] Y. Li, J. Fan, J. Zhang, J. Yang, R. Yuan, J. Cheng, M. Zheng, Q. Dong, A honeycomb-like Co@ N–C composite for ultrahigh sulfur loading Li–S batteries, ACS Nano, 11 (2017) 11417-11424.
[18] R. Hoover and Y. Tolmachev, Electrochemical properties of Pt coatings on Ni prepared by atomic layer deposition, J. Electrochem. Soc., 156 (2009) A37-A43.
[19] T.K. Chin, M.W. Liao, and T.P. Perng, Enabling higher electrochemical activity of Pt nanoparticles uniformly coated on cubic titanium oxynitride by vertical forced-flow atomic layer deposition, J. Power Sources, 434 (2019) 226716.
[20] Y. Hsueh, C. Wang, C. Kei, Y. Lin, C. Liu, and T. P. Perng, Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells, J. Catal., 294 (2012) 63-68.
[21] C. Lin, Y. Zhao, H. Zhang, S. Xie, Y. Li, Z. Jaing, and Z. Liu, Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction, Chem. Sci., 9 (2018) 6803-6812.
[22] J. Ren, M. Antonietti, and T. Fellinger, Efficient water splitting using a simple Ni/N/C paper electrocatalyst, Adv. Energy Mater., 5 (2015) 140660.
[23] Y. Shih, Y. Huang, and C. Huang, Electrocatalytic ammonia oxidation over a nickel foam electrode: Role of Ni(OH)2(s)-NiOOH(s) nanocatalysts, Electrochim. Acta, 263 (2018) 261-271.
[24] H. Lee and S.F. Bent, Microstructure-dependent nucleation in atomic layer deposition of Pt on TiO2, Chem. Mater, 24 (2012) 279-286.