研究生: |
陳怡潔 |
---|---|
論文名稱: |
退火效應對於室溫成長氧化鋅薄膜特性之影響 Annealing effects of ZnO thin film growth at room temperature by atomic layer deposition |
指導教授: |
林志明
李信義 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 原子層沉積法 、X光反射率量測 、X光繞射 、退火效應 、氧化鋅 |
外文關鍵詞: | Atomic layer deposition, X-ray reflectivity, X-ray Diffraction, Annealing effects, ZnO |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用原子層沉積法(Atomic layer deposition, ALD) ,使用二乙基鋅(diethylzinc, DEZn)與去離子水(DI water)做為前驅物,於m-plane sapphire 與Silicon 基板上,以室溫(25℃)成長氧化鋅(ZnO)薄膜。X光反射率量測(X-ray reflectivity ,XRR)結果ZnO薄膜膜厚約為200nm、X光繞射結果(X-ray Diffraction, XRD)顯示量測的ZnO薄膜為多晶結構。後將氧化鋅薄膜在真空中退火,藉由改變退火溫度100~700℃,探討退火效應對氧化鋅薄膜特性的影響。
XRR結果顯示兩種基板上的氧化鋅薄膜經退火後,其膜厚與密度無明顯改變。XRD量測結果顯示兩種基板上的氧化鋅薄膜,隨著退火溫度越高,兩者皆在 (100)方向繞射訊號越強。PL光激發光譜儀顯示在sapphire及Silicon基板上的氧化鋅薄膜退火後紫外光(NBE)強度變佳,並分別在溫度400℃及300℃時,紫外光(NBE)強度最強,波峰有紅移傾向(red-shift);再更高溫退火後,紫外光強度減弱,波峰有藍移傾向(blue-shift)。綠光(green band)強度則在退火後變得微弱,且退火溫度升高對其強度變化無明顯影響。
In this study, Zinc Oxide (ZnO) thin films were grown at 25oC on m-plane sapphire and silicon substrate by using atomic layer deposition with diethylzinc (DEZn) and deionized water (H2O) as the precursor. The results for as grown zinc oxide thin films, are polycrystalline structure and 200 nm total thickness from X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements, respectively. The annealing processes were treated on ZnO thin film with temperature range from 100℃ to 700℃ in vacuum and by changing annealing temperature. We have discussion the physical properties of the influence of annealing effect on ZnO thin film.
The results of annealing effect on ZnO thin film from XRR measurements shown that thickness and density had insignificance change with increased annealing temperature in vacuum. The XRD measurements shown that the more increasing of annealing temperature the more increasing of the intensity of peak (100). According to the photoluminescence (PL) experimental results, the emitted UV light intensity of ZnO thin film growth on sapphire and silicon substrate will be increased after annealing. In addition, the strongest UV emission intensity was obtained at 400℃ and 300℃ separately and the PL near-band-edge (NBE) peak position showed red-shift from room temperature to 400℃ then UV emission intensity decreased and blue-shift slightly from 400℃ to 700℃. The green band emission intensity related to defect and vacancy was very weak respect to NBE and showed insignificance change with annealing temperature.
[1] k. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, J. Crystal Growth, vol. 209, pp. 522-525 (2000).
[2] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang and H. Yan, Mater. Lett., vol. 75, pp. 4655-4659 (2003).
[3] W. Water and S. Y. Chu, Mater. Lett., vol. 55, pp. 67-72 (2002).
[4] K. H. Yoon and J. Y. Cho, Mater. Res. Bull., vol. 35, pp. 39-46 (2000).
[5] S. H. Bae, D. Y. Lee, H. Y. kim and S. Im, Opt. Mater., vol. 17, pp. 327-330 (2001).
[6] Francis A. Jenkins and Harvey E. White, 3rd edition, Mc Graw-Hill Book Company Inc., N. Y. ,U.S.A. (1957).
[7]中國大百科全書-化學篇II P.1126。許鐘榮。錦繡,(1994)。
[8] Wang, Z. L., Journal of Physics: Condensed Matter, Vol. 16, No. 25, pp. R829 (2004).
[9] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. 34, 3 (2003).
[10] P. Vinotha Boorana Lakshmi, K. Sakthi Raj, and K. Ramachandran, Cryst. Res. Technol. 44, No. 2, 153 – 158 (2009).
[11] D. C. Reynolds,D. C. Lock and B. Jogai, Solid State Commun., 99, 873 (1996).
[12] Shigemi Kohiki, Mikihiko Nishitani, and Takahiro Wada., J. Appl. Phys. 75(4), 15 2069 (1994).
[13]S. Y. Chu, W. Water and J. T. Liaw, J. Eur. Cera. Soc., vol. 23, pp 1593-1598 (2003).
[14]R. Wang, Laura L. H. King and Arthur W. Sleight., J. Mater Res. 11 (7) 1659 (1996).
[15]Manabu Komatsu, Naoki Ohashi, Hajime Haneda, Applied Surface Science, 189, 349 (2002).
[16]Kwang Joo Kim and Young Ran Park, Appl. Phys. Lett., 78, 475 (2000).
[17]P. Nunes, D. Costa, E. Fortunato and R. Martins, Vacuum, vol. 64, pp. 293-297 (2002).
[18]Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, J. Crystal growth, 216, 330 (2000).
[19]D. J. Vij, N. Singh, Nova Science Publishers, N. Y.,(1998).
[20]林素霞,“氧化鋅薄膜的特性改良及應用之研究”,國立成功大學材料科學及工程研究所博士論文,2003年6月。
[21]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, J. Appl. Phys., vol. 79(10), pp. 7983-7990 (1996).
[22]X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. G. Kong, Journal of Luminescence, 99, 149 (2002).
[23]甘炯耀,“ZnO 之薄膜製備與發光性質研究”,國立清華大學材料科學工程學系碩士論文,2001年。
[24] X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, X.G. Kong, J. Lumin. 99, 149–154 (2002).
[25] F. Liua, P.J. Caoa,b, H.R. Zhanga, C.M. Shena, Z. Wanga,c, J.Q. Lia, H.J. Gaoa, J. Cryst. Growth. 274, 126–131 (2005).
[26]A. Umar, S.H. Kim, Y.-S. Lee, K.S. Nahm, Y.B. Hahn, J. Cryst. Growth. 282, 131–136 (2005).
[27] Wei Li, Dongsheng Mao, Fumin Zhang, Xi Wang, Xianghuai Liu, Shichang Zou, Yukun Zhu, Qiong Li, Nuclear Instruments and Methods in Physics Research B, 169, 59 (2000).
[28]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
[29]Bixia Lin and Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett., 79, 943-945 (2001).
[30]W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, Nucl. Instr. and Meth. B, vol. 169, pp. 59-63 (2000).
[31] C. G. Van de Walle, Phys. Rev. Lett. 85,1012 (2000).
[32]T. S. Moss, Phys. Soc. London Sect. B, vol. 67 ,pp. 775-782 (1954).
[33]E. Burstein, Phys.Rev., vol. 93, pp. 632-633 (1954).
[34] 莊達人,“VLSI 製造技術”,高立圖書股份有限公司,1995年。
[35]S. Bethke, H. Pan and B. W. Wessels, Appl. Phys. Lett., 52, 138 (1988).
[36]T. Suntola , J. Antson, U.S. Patent No. 4058430 (1977).
[37] F. Y. Tsai, Instruments Today, 29, 1, 44-49 (2007)
[38] 鍾秉翰,“以原子層沉積技術在低溫使用二乙基鋅及氧化亞氮成長高品質氧化鋅薄膜之研究”,國立中興大學光電工程研究所碩士論文,2007年6月。
[39] 李侃峰, 黃智勇, 王慶鈞, “原子層沉積技術的沿革”, 機械工業雜誌, 51-57, 2009年5月。
[40] P. Krishna, Recent Advances in X-Ray Characterization of Materials-II (1989).
[41]許樹恩,吳泰伯,《X光繞射原理與材料結構分析》,修訂版,新竹,中國材料科學學會 發行,民國八十五年九月。
[42]M.F.C. Ladd and R.A. Palmer, Structure Determination by X-Ray Crystallography, 3th ed. (1993).
[43]林麗娟,“X光繞射原理及其應用”,工業材料,86期,1994年2月。
[44]B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (1981).
[45]J.P. Eberhart, Structural and Chemical Analysis of Materials (1991).
[46]G.J. McCarthy, Advances in X-Ray Analysis, 35A (1992).
[47] I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides, and J. D. Axe, Phys. Rev. B, 41, 1111 (1990).
[48] X. L. Zhou and S. H. Chen, Physics Reports, 257, 223 (1995).
[49] D. K. Bowen and B. K. Tanner, Nanotechnology, 4, 175 (1993).
[50] L. G. Parratt, Phys. Rev. 95, 359 (1954).
[51] R. A. Cowley and T. W. Ryan, J. Phys., D 20, 61, (1987).
[52] 郭益男,“反應射頻濺鍍氧化鋅薄膜之光激發特性之研究”,國立中山大學電機工程學系碩士論文”,2004年6月。
[53]黃政銘,“ALD低溫成長ZnO磊晶薄膜及其結構與光學特性研究”,國立新竹教育大學碩士論文”,2010年6月。
[54]謝宗琳,“紫外光發光二極體設計製作”,中華技術學院電子工程研究所碩士論文,2004年7月。
[55] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu, J. Crystal Growth, 263, 269-272 (2004).
[56]陳緯哲,“以射頻濺射共沉積法製備ZnO摻雜MgF2薄膜之光電性質研究”,國立成功大學材料科學及工程學系碩士論文,2005年6月。
[57] E.Burstein, Phys. Rev. 93, 455, (1954).
[58] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130, 269 (1993).
[59] K. Ellmer, K. Diesner, R. Wendt and S. Fiechter, Solid State Phenomena, 51-52, 541 (1996).