研究生: |
張雅梅 Ya-Mei Chang |
---|---|
論文名稱: |
非平穩過程之建模與應用 Nonstationary Spatial Modeling and Application |
指導教授: |
徐南蓉
Nan-Jung Hsu 黃信誠 Hsin-Cheng Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 空間統計 、非平穩過程 |
外文關鍵詞: | constrained least squares, least angle regression, positive Lasso, spatial prediction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中,我們提出兩個新方法用以估計非平穩共變異函數與預測缺失值,
第一種方法適用於重覆觀測資料,第二種則適用在單次觀測資料上。
第一種方法將空間訊號表示為數個基底函數與數個平穩過程的線性組合,
假設空間訊號在各個基底上的分量與各個平穩過程間均為獨立,利用迴歸分析處理此模式的參數估計問題,
並採取Tibshirani(1996)所提出的選取變數之方法來挑選適合的基底函數與平穩過程,
至於預測方法則採用最佳線性不偏預測法(best linear unbiased prediction)。
第二種方法是在小波(wavelet)域上建構非平穩空間模式,這個模式需要將資料的空間位置映在規則格點上。
空間過程經由小波轉換後,假設其變異數的對數(log variance)服從條件自迴歸模型
(conditional autoregressive model) (Besag, 1974),統計推論則採用貝氏分析法(Bayesian inference)。
這個方法允許有缺失值,因此對於非規則格點的資料,只要將其對應到夠細的格子點上,亦可適用。
在特定轉換下,兩種模式的共變異矩陣為對角或近似對角矩陣,
因此在處理龐大的空間資料時,能迅速有效地運算。透過模擬,
發現所提之兩種模式對於平穩或非平穩過程都有很好的近似結果,應用在實際資料上也有不錯的預測表現。
In this thesis, we develop two approaches for approximating nonstationary spatial covariance function
and predicting missing data. The first approach is proposed for handling spatial data with
multiple replications and the second is for spatial data with single replication. The first method
represents a spatial process as a linear combination of some local basis
functions with uncorrelated random coefficients plus some independent stationary processes.
The covariance function estimation problem is
formulated as a regression problem and a constrained least squared method proposed by Tibshirani
(1996) is applied for selecting appropriate basis functions and stationary processes, and
estimating parameters. The best linear unbiased prediction is then used for prediction.
The second approach is constructed on the wavelet domain. It can be applied to lattice data
with single measurement. In wavelet domain, the log variances of the
transformed data are assumed to follow the conditional autoregressive model (Besag, 1974).
Bayesian inference is implemented for estimation and prediction.
Since missing data are allowed in this approach, it can be adopted to irregularly spaced data by
mapping irregular data on a finer grid.
Both approaches are computationally efficient for handling large data sets since the
covariance matrix of either method is diagonal or nearly diagonal under a certain transformation.
Simulation experiments show that the proposed methods approximate both stationary and
nonstationary dependence structures very well. Both methods also perform well in
prediction for real applications.
Abramowitz, M. and Stegun, I. A. (1965). Handbook of mathematical functions. Dover, New York.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussions).Journal of the Royal Statistical Society, Series B, 36, 192-236.
Besag, J. and Kooperberg, C. (1995). On condition and intrinsic autoregressions. Biometrika, 82, 733-746.
Besag, J., York, J. and Mollie, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 43,1-20.
Bruce, A. and Gao, H. (1996). Applied Wavelet Analysis with S-PLUS. Springer, New York.
Burgees, T. M. and Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil
properties, I: The semi-variogram and punctual kriging. Journal of Soil Science, 31, 315-331.
Cerioli, A. and Riani, M. (2003). Robust methods for the analysis of spatially autocorrelated
data. Statistical Methods and Applications, 11, 335-358.
Choi, S. J. and Woods, J. W. (1999). Motion-compensated 3-D subband coding of video. IEEE
Transactions on Image Processing, 8, 155-167.
Clerc, M. and Mallat, S. (2003). Estimating deformations of stationary processes. Annals of
Statistics, 31, 1772-1821.
Cohen, A. and Jones, R. H. (1969). Regression on a random eld. Journal of the American
Statistical Association, 64, 1172-1182.
Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley, New York.
Cressie, N. A. C. and Harteld, M. N. (1996). Conditionally specied gaussian models for spatial
statistical analysis of eld trials. Journal of Agricultural, Biological, and Environmental
Statistics, 1, 60-77.
Cressie, N. A. C. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets.
Journal of the Royal Statistical Society, Series B, 70, 209-226.
Cressie, N. A. C. and Read, T.R.C. (1985). Do sudden infant deaths come in clusters? Statistical
Decisions, Supplement Issue No. 2, 3, 333-349.
Cressie, N. A. C. and Read, T.R.C. (1989). Spatial data analysis of regional counts. Biometrical
Journal, 31, 699-719.
Creutin, J. and Obled, C. (1982). Objective analysis and mapping techniques for rainfall elds:
an objective comparison. Water Resources Research, 18, 413-431.
Cselenyi, Z., Olsson, H., Farde, L. and Gulyas B. (2002). Wavelet-aided parametric mapping of
cerebral dopamine D-2 receptors using the high anity PET radioligand. Neuroimage, 17, 47-60.
Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on information theory,
41, 613-627.
Donoho, D. L. (1997). Cart and best-ortho-basis: a connection. Annals of Statistics, 25, 1870-1911.
Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of The American Statistical Association, 90, 1200-1224.
Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via wavelet shrinkage. Annals
of Statistics, 26, 879-921.
Doukhan, P. (1988). Formes de Toeplitz associees a une analyse multiechelle. Comptes Rendus
Acad. Sci. Paris Ser. A, 306: 663-666.
Doukhan, P. and Leon, J. R. (1990). Deviation quadratique d'estimateurs de densite par projections
orthogonales. Comptes Rendus Acad. Sci. Paris Ser. I Math., 310: 425-430.
Dreesman, J. M. and Tutz, G. (2001). Non-Stationary conditional models for spatial data based
on varying coecients. The Statistician, 50, 1-15.
Efron, B., Hastie, T., Johnstone I. and Tibshirani R. (2004). Least angle regression. The Annals
of Statistics, 32, 407-499.
Faireld Smith, H. (1938). An experimental law describing heterogeneity in the yields of agricultural
crops. Journal of Agricultural Science (Cambridge), 28, 1-23.
Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of Computational
and Graphical Statistics, 7, 397-416.
Fuentes, M. (2001). A high frequency kriging approach for non-stationary environmental processes.
Environmetics, 12, 469-483.
Fuentes, M. (2002). Spectral methods for nonstationary spatial process. Biometrika, 89, 197-210.
Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. Journal of
the American Statistical Association, 102, 321-331
Fuentes, M. and Smith, R. L. (2002). A new class of nonstationary spatial models. Technical
Report, North Carolina State University.
Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large
spatial datasets. Journal of Computational and Graphic Statistics, 15, 502-523.
Gao, H-Y. (1996). Spectral density estimation via wavelet shrinkage. StatSci Division of MathSoft,
Inc..
Gao, H-Y. (1997). Choice of thresholds for wavelet shrinkage estimate of the spectrum. Journal
of Time Series Analysis, 18.
Grondona, M. O. and Cressie, N. (1991). Using spatial considerations in the analysis of eld
experiments. Technometrics, 33, 381-392.
Guttorp, P. and Sampson, P. D. (1994). Methods for estimating heterogeneous spatial covariance
functions with environmental applications. Handbook of Statistics XII: Environmental
Statistics, edited by Patil, G. P. and Rao, C. R., North Holland/Elsevier, New York, 663-690.
Haas, T. C. (1990). Kriging and automated variogram modeling within a moving window. Atmo-
spheric Environment, 24A, 1759-1769.
Haas, T. C. (1995). Local prediction of a spatio-temporal process with an application to wet
sulfate deposition. Journal of the American Statistical Association,90, 1189-1199.
Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative
Methods for Current Environmental Issues (eds. C. Anderson et al.), Springer, London, 37-54.
Higdon, D., Swall, J. and Kern, J. (1999). Non-stationary spatial modeling. In Bayesian Statistics,
6 (eds. J. M. Bernardo et al.), Oxford University Press, 761-768.
Holland, D., Saltzman, N., Cox, L. H., and Nychka D. (1999). Spatial prediction of sulfur dioxide
in the eastern United States. In geoENV II: Geostatistics for Environmental Applications
(eds. J. Gomez-Hernandez, J. Soares, and R. Froidevaux), Kluwer Academic Publishers, Dordrecht,
65-76.
Iovle, S. and Perrin, O. (2004). Estimating a nonstationary spatial structure using simulated
annealing. Journal of Computational and Graphical Statistics, 13, 90-105.
Istok, J. D. and Cooper, R. M. (1988). Geostatistics applied to groundwater pollution. III: Global
estimates. Journal of Environmental Engineering, 114, 915-928.
Katul, G. G. and Parlange, M. B. (1994). On the active-role of temperature in surface-layer
turbulence. Journal of the Atmospheric Sciences, 51, 2181-2195.
Kim, H.-M., Mallick, B. K., and Holmes, C. C. (2005). Analyzing nonstationary spatial data using
piecewise Gaussian processes. Journal of the American Statistical Association, 100, 653-668.
Kunsch, H. R. (1985). Statistical analysis of uniformity trials based on parametric models. Tech-
nical Report, Seminar fur Statistik, Eidgenossische Technische Hochschule Zurich, Zurich.
Li, H., Caldery, C. A. and Cressie, N. (2007). Beyond Moran's I: testing for spatial dependence
based on the SAR model. Geographical Analysis, 39, 357-375.
Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-693.
Matern, B. (1986), Spatial Variation (second edition), Lecture Notes in Statistics, Springer: New York.
Mateu, J. and Porcu, E. (2005). Archimedean spatio-temporal zonally anisotropic covariance
functions. Technical Report 86-2005, Department of Mathematics, Universitat Jaume I.
Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246-1266.
Matsuo, T., Paul, D. and Nychka, D. (2006). Nonstationary covariance modeling for incomplete
data: smoothed Monte Carlo EM approach. Submitted.
Mercer, W. B. and Hall, A. D. (1911). The experimental error of eld trials. Journal of Agricultural
Science (Cambridge), 4, 107-132.
Meiring, W., Monestiez, P., Sampson, P. D. and Guttorp, P. (1997). Developments in the modelling
of nonstationary spatial covariance structure from space-time monitoring data. Geo-
statistics Wollongong '96, edited by Baa, E. Y. and Schoeld, N. A., Kluwer Academic
Publishers, Dordrecht, 162-173.
Nott, D. J. and Dunsmuir, W. T. M. (2002). Estimation of nonstationary spatial covariance
structure. Biometrika, 89, 819-829.
Nychka, D. and Saltzman, N. (1998). Design of air quality monitoring networks. Case Studies
in Environmental Statistics, edited by Nychka D., Piegorsch W. and Cox, L. H., Springer
Lecture Notes in Statistics, Springer Verlag, New York, 51-76.
Nychka, D, Wikle, C. and Royle, J. A. (2002). Multiresolution models for nonstationary spatial
covariance function. Statistical Modeling, 2, 315-331.
Obled, C. and Creutin, J. D. (1986). Some developments in the use of empirical orthogonal
functions for mapping meteorological elds. Journal of Applied Meteorology, 25, 1189-1204.
Ore, J. K. and Rees, M. (1979). Spatial process: recent developments with application to hydrology.
In Mathematics of Hydrology and Water Resources, E.H. Lloyd, T. O'Donnell, and J.C.
Wilkinson, eds. Academic Press, London, 95-118.
Paciorek, C. J. (2003). Nonstationary Gaussian processes for regression and spatial modeling.
Ph. D. dissertation, Department of Statistics, Carnegie Mellon University.
Paciorek, C. J. and Schervush, M. J. (2004). Nonstationary covariance functions for Gaussian
process regression. In Advances in Neural Information Processing System 16 (eds S. Thrun,
L. Saul, and B. Scholkopf), MIT Press, Cambridge, MA, 273-280.
Paciorek, C. J. and Schervush, M. J. (2006). Spatial modelling using a new class of nonstationary
covariance functions. Environmetrics, 17, 483-506.
Paez, A. (2002). Spatial parametric non-stationarity: a variance heterogeneity approach. 49th
Annual North American Meetings of the Regional Science Association International,San Juan, Puerto Rico, 14-16 November.
Patankar, P. H. (1954). The goodness of t of frequency distributions obtained from stochastic
processes. Biometrika, 41, 450-462.
Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes
are unequal. Biometrika, 58, 545-554.
Pintore, A. and Holmes, C. C. (2004). Non-stationary covariance functions via spatially adaptive
spectra. Technical Report, Department of Statistics, University of Oxford.
Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random elds to Gaussian elds.
Scandinavian Journal of Statistics, 29, 31-49.
Sampson, P. and Guttorp, P. D. (1992). Nonparametric estimation of nonstationary spatial covariance
structure. Journal of the American Statistical Association, 87, 108-119.
Schmidt, A. M. and O'Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance
structure via spatial deformations. Journal of the royal Statistical Society, Series B, 65,
743-758.
Sherman, M. (1996). Variance estimation for statistics computed from spatial lattice data. Journal
of the Royal Statistical Society, Series B, 58, 509-523.
Stein, M. L. (1999). Interpolation of Spatial Data : Some Theory for Kriging. Springer, New York.
Stein, M. L. (2005). Nonstationary spatial covariance functions. Technical Report 21, Center for
Integrating Statistical and Environmental Science, University of Chicago.
Stein, M. L. (2007). A modeling approach for large spatial datasets. Technical Report, The University of Chicago.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58, 267-288.
Tibshirani, R. (1997). The lasso method for variable selection in the cox model. Statistics in
Medicine, 16, 385-395.
Townsend, R. H. D. (1999). Spatial wavelet analysis of line-prole variations. Monthly Notices of
the Royal Astronomical Society, 310, 851-862.
Vidakovic, B. (1999). Spatial Modeling by Wavelets. John Wiley, New York.
Watson, G. S. (1972). Trend surface analysis and spatial correlation. Geological Society of Amer-
ica, Special Paper, 146, 39-46.
Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434-449.
Wikle, C. K. and Cressie, N. (1999). A dimension-reduced approach to space-time Kalman ltering.
Biometrika, 86, 815-829.
Wu, Y. F. and McMechan, G. A. (1998). Wave extrapolation in the spatial wavelet domain with
application to poststack reverse-time migration. Geophysics, 63. 589-600.
Yan, J. (2007). Spatial Stochastic Volatility for Lattice Data. Journal of Agricultural, Biological,
and Environmental Statistics, 12, 25-40.