研究生: |
吳健為 Chien-Wei Wu |
---|---|
論文名稱: |
有機金屬化學氣相沉積氮化鈦與氮化鈮薄膜在銅金屬化製程之應用暨自我組織奈米分子薄膜在低介電材料之應用研究 Metallorganic Chemical Vapor Deposited Metal (Ti, Nb) Nitride Films and Self-Organized Nano Molecular Films on the Low-k PMSQ |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2002 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 化學氣相沈積 、氮化鈮 、氮化鈦 、介電層 |
外文關鍵詞: | MOCVD, NbN, TiN, PMSQ |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究動機:
隨著元件日益微小化後,其接觸孔與介層孔也將隨之微小化且深寬比亦增加,此時利用傳統的物理氣相沈積法(PVD)方式沈積金屬阻障層很難符合未來元件應用上的需求,因此開發化學氣相沈積技術(CVD)來取代傳統物理氣相沈積,而隨著銅金屬化製程與低介電材料引入半導體製程中,發展一低溫製程的金屬阻障層研究將扮演相當重要的角色。若是採用低壓化學氣相沈積金屬阻障層,雖可得到低電阻率的薄膜,然而沉積溫度過高,將無法在銅製程及低介電材料上應用。本研究採用金屬有機化學氣相沈積法(MOCVD),利用有機金屬化合物與NH3進行反應,成長所要的氮化鈦(TiN)與氮化鈮(NbN)薄膜,並研究其在銅金屬擴散阻障層的應用。
最近,在超大型積體電路的後段製程中,有兩種關鍵性材料的研發。一種為銅金屬,取代傳統的鋁金屬導線,可降低金屬導線的電阻值;另一種則是低介電材料的引入,以取代傳統的介電材料。低介電材料是指介電係數小於3.5的材料,大致可分類成下列三種: (一) 旋轉塗佈(spin-on)介電材料,例如:PAE-2 (k= 2.8), Silk (k= 2.7), 及 FLARE (k= 2.8);(二) 化學氣相沈積材料CVD,例如:SiOF (k= 3.5), 1MS-doped OSG (k= 2.9), 及3MS-doped OSG (k= 2.7) ;及 (三) 孔隙型(porous)材料,例如:xerogels及aerogels (k< 2.0)。近年來,一些孔隙型氧化矽基材的超低介電材料則受到相當的注目,例如porous methyl silsesquioxane (PMSQ, k= 1.82)。PMSQ有著傳統介電材料氧化矽的基本特性,具有良好的薄膜硬度與熱穩定性,另一方面,由於薄膜外層帶有一層疏水性甲基(-CH3),可有效抑制薄膜因吸收水氣致使介電係數上升。然而PMSQ卻會在光阻劑剝除過程造成PMSQ薄膜破壞,因此需要發展一套方法以保護PMSQ薄膜。我們以自我組織奈米分子薄膜(self-organized nano molecular films, SOMs)成長在PMSQ上,並薄膜性質進行探討。
研究結果:
利用TDMAT為前驅物與NH3反應,可在300 oC以上生成均勻的TiN金屬阻障層,為了降低薄膜的電阻率,我們探討多層成長方式之薄膜性質,多層成長方式是薄膜每成長約20 nm後,以NH3電漿處理60秒鐘,如此反覆至所需厚度。以多層成長方式之薄膜電阻率僅約為直接成長方式之薄膜的一半,在325-350 oC下成長薄膜,電阻率可達540 □□cm。薄膜的氧含量可因此成長方式從原來的22%降至10%,而碳原子的含量則維持在10%上下。而從XRD與TEM的分析,可得知薄膜的結構皆為非晶質相。
我們以EtN=Nb (NEt2)3為前驅物,在反應溫度500-600 oC下,沈積出接近非晶狀態之NbN薄膜,表面反應的活化能為0.71±0.05 eV。我們亦以EtN=Nb (NEt2)3加入NH3參與反應,在沈積溫度降至300-425 oC間進行薄膜沈積,反應的活化能降為0.23±0.04 eV。薄膜的成分分析可知,加入NH3參與反應可使C含量也大量下降,同時N與Nb的比值也從1.67降至1.1。為了降低薄膜的電阻率,我們探討多層成長方式之薄膜性質,多層成長方式是薄膜每成長約10 nm後,以NH3電漿處理60秒鐘,如此反覆至所需厚度。以多層成長方式的NbN薄膜,電阻率與C、O含量皆明顯減少許多。在銅金屬的擴散研究,50nm的NbN薄膜,在退火溫度600 oC 30分鐘下,仍可保持擴散阻障層的性質。
PMSQ試片經過O2電漿處理 (dry-etched PMSQ, DE-PMSQ) 使表面為親水性的 –OH基,以2 % anhydrous diclorodimethylsilane solution (C2H6Cl2Si, M.W.= 129 g/mol) 來成長SOMs,此反應在室溫下為自發反應。另外,我們亦利用超音波震盪器來加速反應,可使SOMs在5分鐘內即快速生成。由於DE-PMSQ表面親水性的-OH基被置換成疏水性的Si(CH3)2分子團,使得DE-PMSQ不易吸收水氣,避免介電係數上升。從AFM分析可知SOMs/DE-PMSQ表面非常平整。從漏電流與介電係數的分析,SOMs/DE-PMSQ與DE-PMSQ並無顯著的差異。因此PMSQ可藉由疏水性的SOMs保護,以應用在元件製程上。
Titanium nitride films were grown by thermal CVD from tetrakis (dimethylamido) titanium (TDMAT) and ammonia at 300 and 325 oC in a cold wall reactor at pressures of 0.5 Torr. In order to decrease the resistivity of films, multi-layer deposition TiNx films were investigated. The resistivity of deposited film was as low as to about 540 □□cm at 325 oC and 350 oC. The resistivity film deposited at 325 oC is almost 2 times lower than direct deposition. The carbon concentrations are about 10 at % in both direct and multi-layer deposition films. The oxygen concentrations are decreased significantly from 22 % to 10 % by multi-layer deposition. On the other hand, the oxygen concentration was increased with deposition. This results in a higher resistivity at high deposition temperatures. From XRD spectra and the broad diffraction ring patterns show that the films are of almost amorphous structure.
Amorphous NbNx films were deposited on SiO2 by metallorganic chemical vapor deposition (MOCVD) using ethylimidotris (diethylamido) niobium(V) [EtNb=N (NEt2)3] source with NH3 at various temperatures. The diffusion barrier properties of NbNx films for Cu metallization were investigated. MOCVD NbNx thin films were obtained from the EtN=Nb (NEt2)3 MO source and NH3 at temperatures from 300 to 425 oC. The multi-layered NbNx films were formed by alternately depositing 5-nm-thick NbNx films and NH3 plasma post-treatment for 60 s with every 5nm depositing. By multi-layer deposition, both the resistivity and concentration of C and O in films were reduced significantly. The activation energy for the reaction was measured to be 0.23±0.04 eV by adding 20 sccm NH3 in the temperature range of 300 - 400 oC. 50-nm-thick NbNx film was found to effectively prevent the penetration of Cu into the substrate in samples annealed at 600 oC for 1 hr. The barrier failure mechanism in NbNx is the diffusion of Cu through the barrier layer with the formation of niobium silicide.
By dipping in the silanisation solution, the hydrophobic self-organized nano molecular film (SOM) was successfully grown on the surface of the dry-etched porous methyl silsesquioxane (DE-PMSQ). The reaction was spontaneous at room temperature. The moisture adsorption on the DE-PMSQ was avoided and the surface of the SOM/DE-PMSQ was rather smooth. Leakage current and the dielectric constant measurement of DE-PMSQ and SOM/DE-PMSQ samples also showed consistent behaviors. As a result, it is promising to use the low-k PMSQ as an inter-metal dielectric (IMD) with the hydrophobic SOM grown on the DE-PMSQ.
Chapter 1
1. J. Heidenreich, D. Edelstein, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, T. McDevitt, A. Stamper, A. Simon, J. Dukovic, P.C. Andricacos, R. Wachnik, H. Rathore, T. Katsetos, P. McLaughlin, S. Luce, and J. Slattery, “Copper dual damascene wiring for sub-0.25 □m CMOS technology”, Interconnect Technology Conference, 1998. Proceedings of the IEEE 1998 International, 1998, 151-153.
2. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L.Y. Chen, S. Ramaswami, and D. Carl, “Properties of copper films prepared by chemical vapor deposition for advanced metallization of microelectronic devices”, J. Electrochem. Soc. 146, 3248-3254 (1999).
3. S. Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, and T. Lii, “Integration of multi-level copper metallization into a high performance sub-0.25 □m CMOS technology”, Devices, Circuits and Systems, 1998. Proceedings of the 1998 Second IEEE International Caracas Conference, 1998, 146-152.
4. A. Deutsch, H. Smith, G. V. Kopcsay, D. C. Edelstein, and P. W. Coteus, “On-chip wiring design challenges for GHz operation”, Electrical Performance of Electronic Packaging, Piscataway, New Jersey, 45-48 (1999) .
5. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, “Influence of diffusion barriers on the nucleation and growth of CVD Cu for interconnect applications”, Microelectronic Engineering 50, 375-381 (2000).
6. P. C. Andricacos, “Copper on-chip interconnections”, Interface (USA), Spring, 32-37 (1999).
7. M. T. Bohr and Y. A. El-Mansy, “Technology for advanced high-performance microprocessors”, IEEE Trans. Electron Dev. 45, 620–625 (1998).
8. L. C. Parrillo, “Issues in developing a manufacturable interconnect tecnnology”, Advanced Metallization for ULSI Application in 1994, 3-16 (1994).
9. K. Hinode, Y. Homma, M. Horiuchi, and T. Takahashi, “Morphology-dependent oxidation behavior of reactively sputtered titanium-nitride films”, J. Vac. Sci. Technol. A 15, 2017-2022 (1997).
10. A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors”, J. Appl. Phys. 79, 163-169 (1996).
11. Y. P. Chen, G. A. Dixit, J. P. Lu, W. Y. Hsu, A. J. Konecni, J. D. Luttmer, and R. H. Havemann, “Integrated barrier/plug fill schemes for high aspect ratio Gb DRAM contact metallization”, Thin Solid Films 320, 73-76 (1998).
12. S. K. Lakshmanan and W. N. Gill, “A novel model of hydrogen plasma assisted chemical vapor deposition of copper”, Thin Solid Films 338, 24-39 (1999).
13. J. Y. Yun, M. Y. Park, and S. W. Rhee, “Effect of the gas-phase reaction in metallorganic chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium”, J. Electrochem. Soc. 145, 2453-2456 (1998).
14. K. M. Takahashi, “Electroplating copper onto resistive barrier films”, J. Electrochem. Soc. 147, 1414-1417 (2000).
15. K. M. Takahashi and M. E. Gross, “Transport phenomena that control electroplated copper filling of submicron vias and trenches”, J. Electrochem. Soc. 146, 4499-4503 (1999).
16. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features”, J. Electrochem. Soc. 147, 4524-4535 (2000).
17. C. T. Chua, G. Sarkar, and X. Hu, “In situ characterization of methylsilsesquioxane curing”, J. Electrochem. Soc. 145, 4007-4011 (1998).
18. M. J. Loboda, C. M. Grove, R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins”, J. Electrochem. Soc. 145, 2861-2865 (1998).
19. C. Hu, M. Morgen, P. S. Ho, A. Jain, W. N. Gill, J. L. Plawsky, P. C. Wayner, “Thermal conductivity study of porous low-k dielectric materials”, Appl. Phys. Lett. 77, 145 (2000).
20. Y. Uchida, T. Katoh, S. Sugahara, M. Matsumura, “Chemical vapor deposition based preparation on porous silica films”, Jpn. J. Appl. Phys. Lett. 39, 1155 (2000).
21. J. H. Kim, S. B. Jung, H. H. Park, and S. H. Hyun, “The effects of pre-aging and concentration of surface modifying agent on the microstructure and dielectric properties of SiO2 xerogel film”, Thin Solid Films 377-378, 467-472 (2000).
Chapter 2
1. J. Heidenreich, D. Edelstein, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, T. McDevitt, A. Stamper, A. Simon, J. Dukovic, P. C. Andricacos, R. Wachnik, H. Rathore, T. Katsetos, P. McLaughlin, S. Luce, and J. Slattery, “Copper dual damascene wiring for sub-0.25 □m CMOS technology”, Interconnect Technology Conference, 1998. Proceedings of the IEEE 1998 International, 1998, 151-153.
2. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L.Y. Chen, S. Ramaswami, and D. Carl, “Properties of copper films prepared by chemical vapor deposition for advanced metallization of microelectronic devices”, J. Electrochem. Soc. 146, 3248-3254 (1999).
3. S. Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, and T. Lii, Devices, “Integration of multi-level copper metallization into a high performance sub-0.25 □m CMOS technology”, Circuits and Systems, 1998. Proceedings of the 1998 Second IEEE International Caracas Conference, 1998, 146-152.
4. A. Deutsch, H. Smith, G. V. Kopcsay, D. C. Edelstein, and P. W. Coteus, “On-chip wiring design challenges for GHz operation”, Electrical Performance of Electronic Packaging, Piscataway, New Jersey, 45-48 (1999).
5. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, “Influence of diffusion barriers on the nucleation and growth of CVD Cu for interconnect applications”, Microelectronic Engineering 50, 375-381 (2000).
6. S. R. Kurtz, and R. G. Gordon, “Chemical Vapor-Deposition of Titanium Nitride at Low-Temperatures”, Thin Solid Films 140, 277-290 (1986).
7. N. Yokoyama, K. Hinode, and Y. Homma, “LPCVD titanium nitride for ULSIs”, J. Electrochem. Soc. 138, 190-195 (1991).
8. M. J. Buiting, and A. F. Otterloo, “Relationship between the process parameters and film properties of "low temperature" low-pressure chemical vapor deposition titanium nitride films”, J. Electrochem. Soc. 139, 2580-2584 (1992).
9. R. I. Hegde, R. W. Fiordalice, E. O. Travis, and P. J. Tobin, “Thin film properties of low-pressure chemical vapor deposition TiN barrier for ultra-large-scale integration applications”, J. Vac. Sci. Technol. B 11 (4), 1287-1296 (1993).
10. Y. J. Mei, T. C. Chang, J. C. Hu, L. J. Chen, Y. L. Yang, F. M. Pan, W. F. Wu, A. Ting, and C. Y. Chang, “Characterization of TiN film grown by low-pressure chemical-vapor-deposition”, Thin Solid Films 308, 594-598 (1997).
11. C. Faltermeier, C. Goldberg, M. Jones, A. Upham, D. Manger, G. Peterson, J. Lau, A. E. Kaloyeros, B. Arkles, and A. Paranjpe, ”Barrier properties of titanium nitride films grown by low temperature chemical vapor deposition from titanium tetraiodide”, J. Electrochem. Soc. 144, 1002-1007 (1997).
12. C. G. Faltermeier, C. Goldberg, and M. Jones, A. Upham, A. Knorr, A. Ivanova, G. Peterson, A. E. Kaloyeros and B. Arkles, “The effects of processing parameters in the low-temperature chemical vapor deposition of titanium nitride from tetraiodotitanium”, J. Electrochem. Soc. 145, 676-682 (1998).
13. M. Eizenberg, “Chemical-vapor-deposition of tin for sub-0.5-mu-m ULSI circuits”, MRS Bull. 20, 38-41 (1995)
14. R. M. Fix, R. G. Gordon, and D. M. Hoffman, “Synthesis of thin-films by atmospheric-pressure chemical vapor-deposition using amido and imido titanium(iv) compounds as precursors”, Chem. Mater. 2 235-241 (1990)
15. R. M. Fix, R. G. Gordon, and D. M. Hoffman, “Chemical vapor deposition of titanium, zirconium, and hafnium nitride thin-films”, Chem. Mater. 3, 1138-1148 (1991).
16. I. J. Raaijmakers, “Low-temperature metal-organic chemical-vapor- deposition of advanced barrier layer for the microelectronics industry”, Thin Solid Films 247, 85-93 (1994).
17. S. C. Sun, and M. H. Tsai, “Comparison of chemical-vapor-deposition of tin using tetrakis-diethylamino-titanium and tetrakis-dimethylamino titanium”, Thin Solid Films 253, 440-444 (1994).
18. D. H. Kim, J. J. Kim, J. W. Park, and J. J. Kim, “Stability of TiN films prepared by chemical vapor deposition using tetrakis-dimethylamino titanium”, J. Electrochem. Soc. 143, L188-L190 (1996).
19. J. Y. Yun, M. Y. Park, and S. W. Rhee, “Effect of the gas-phase reaction in metallorganic chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium”, J. Electrochem. Soc. 145, 2453-2455 (1998).
20. K. Ishihara, K. Yamazaki, H. Hamada, K. Kamisako, and Y. Tarui, “Characterization of CVD-TiN films prepared with metalorganic source”, Jpn. J. Appl. Phys. 29, 2103-2105 (1990).
21. A. Katz, A. Feingold, S. Nakahara, S. J. Pearton, E. Lane, M. Geva, F. A. Stevie, and K. Jones, “The influence of ammonia on rapid-thermal low-pressure metalorganic chemical vapor deposited TiNx films from tetrakis (dimethylamido) titanium precursor onto InP”, J. Appl. Phys. 71, 993-1000 (1992).
22. A. Paranjpe, and M. IslamRaja, “Chemical vapor deposition TiN process for contact/via barrier applications”, J. Vac. Sci. Technol. B 13 (5), 2105-2114 (1995).
23. L. H. Dubois, B. R. Zegarski, and G. S. Girolami, “Infrared studies of the surface and gas phase reactions leading to the growth of titanium nitride thin films from tetrakis(dimethylamido)titanium and ammonia”, J. Electrochem. Soc. 139, 3603-3609 (1992).
24. G. S. Sandhu, S. G. Meikle, and T. T. Doan, “Metalorganic chemical vapor deposition of TiN films for advanced metallization”, Appl. Phys. Lett. 62, 240 (1993).
25. J. A. Prybyla, C. M. Chiang, and L. H. Dubois, “Investigations of the Growth of TiN Thin Films from Ti(NMe2)4 and Ammonia”, J. Electrochem. Soc. 140, 2695-2702 (1993).
26. B. H. Weiller, and B. V. Partido, “Flow-tube kinetics of gas-phase chemical-vapor-deposition reactions TiN from Ti(NMe2)4 and NH3”, Chem. Mater. 6, 260-261 (1994).
27. I. J. Raaijmakers, and J. Yang, “Low-temperature MOCVD of advanced barrier layers for the microelectronics industry”, Appl. Surf. Sci. 73, 31-41 (1993).
28. T. S. Cale, M. B. Chaara, G. B. Raupp, and I. J. Raaijmakers, “Kinetics and conformality of TiN films from TDEAT and ammonia”, Thin Solid Films 236, 294-300 (1993).
29. A. Intemann, H. Koerner, and F. Koch, “Film properties of CVD titanium nitride deposited with organometallic precursors at low pressure using inert gases, ammonia or remote activation”, J. Electrochem. Soc. 140, 3215-3221 (1993).
30. A. Weber, R. Nikulski, C.-P. Klages, M. E. Gross, W. L. Brown, E. Dons, and R. M. Charatan, “Low temperature deposition of TiN using tetrakis(dimethylamido)-titanium in an electron cyclotron resonance plasma process”, J. Electrochem. Soc. 141, 849-852 (1994).
31. A. Weber, R. Nikulski, and C.-P. Klages, “Deposition of TiN using tetrakis(dimethylamido)-titanium in an electron-cyclotron-resonance plasma process”, Appl. Phys. Lett. 63, 325-327 (1993).
32. T. Akihori, A. Tanihara, and M. Tano, “Preparation of TiN films by electron-cyclotron resonance plasma chemical vapor-deposition”, Jpn. J. Appl. Phys. 30, 3558-3561 (1991).
33. J. S. Kim, E. J. Lee, J. T. Baek, and W. J. Lee, “Effects of deposition parameters on composition, structure, resistivity and step coverage of TiN thin films deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition”, Thin Solid Films 305, 103-109 (1997).
34. H. K. Shin, H. J. Shin, J. G. Lee, S. W. Kang, and B. T. Ahn, “MOCVD of titanium nitride from a new precursor, Ti[N(CH3)C2H5](4)”, Chem. Mater. 9, 76-80 (1997).
Chapter 3
1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (2000).
2. J. Li, R. Blewer, and J. W. Mayer, “Copper-based metallization for ULSI applications”, MRS Bulletin 18, 18-21 (1993)
3. S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suther, S. Redkar, and K. B. Kim, “Reactively sputtered TiN as a diffusion barrier between Cu and Si”, J. Appl. Phys. 68, 5176-5187 (1990).
4. K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon - failure mechanism and effect of nitrogen additions”, J. Appl. Phys. 71, 5433-5444 (1992).
5. R. I. Hedge, P. J. Tobin, R. W. Fiordalice, and E. O. Travis, “Nucleation and growth of chemical vapor deposition TiN films on Si (100) as studied by total reflection x-ray fluorescence, atomic force microscopy, and Auger electron spectroscopy”, J. Vac. Sci. Technol. A 11, 1692-1695 (1993).
6. M. Eizenberg, K. Littau, S. Ghanayem, M. Liao, R. Mosely, and A. K. Sinha, “Chemical vapor deposited TiCN: A new barrier metallization for submicron via and contact applications”, J. Vac. Sci. Technol. A 13, 590-595 (1995).
7. N. J. Ianno, A. U. Amed, and D. E. Englebert, “Plasma-enhanced chemical vapor of TiN from TiCl4/N2/H2 gas mixtures”, J. Electrochem. Soc. 136, 276-280 (1989).
8. P. Alen, M. Juppo, M. Ritala, T. Sajavaara, J. Keinonen and M. Leskela, “Atomic layer deposition of Ta(Al)N(C) thin films using trimethylaluminum as a reducing agent”, J. Electrochem. Soc. 148, G566-G571 (2001).
9. Y. T. Kim, C. S. Kwon, D. J. Kim, J. W. Park, and C. W. Lee, “Effects of nitrogen ion implantation on the thermal stability of tungsten thin films”, J. Vac. Sci. Technol. A 16, 477-481 (1998).
10. I. J. Raajimakers, “Low-temperature metal-organic chemical-vapor- deposition of advanced barrier layer for the microelectronics industry”, Thin Solid Films 247, 85-93 (1994).
11. S. C. Sun, and M. H. Tsai, “Comparison of chemical-vapor-deposition of tin using tetrakis-diethylamino-titanium and tetrakis-dimethylamino titanium”, Thin Solid Films 253, 440-444 (1994).
12. J. Y. Yun, M. Y. Park, and S. W. Rhee, “Comparison of tetrakis(dimethylamido)titanium and tetrakis(diethylamido)titanium as precursors for metallorganic chemical vapor deposition of titanium nitride”, J. Electrochem. Soc. 146, 1804-1808 (1999).
13. H. T. Chiu, and W. P. Chang, “Deposition of tantalum nitride thin-films from ethylimidotantalum complex”, J. Mater. Sci. Lett. 11, 96-98 (1992).
14. G. C. Jun, S. L. Cho, and K. B. Kim, “Low temperature deposition of TaCN films using pentakis(diethylamido)tantalum”, Jpn. J. Appl. Phys. 37, L30-L32 (1998).
15. S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin, and S. D. Kim, “Diffusion barrier properties of metallorganic chemical vapor deposited tantalum nitride films against Cu metallization”, J. Electrochem. Soc. 146, 3724-3730 (1999).
16. M. H. Tsai, S. C. Sun, H. T. Chiu, C. E. Tsai, and S. H. Chuang, ” Metalorganic chemical vapor deposition of tantalum nitride by tertbutylimidotris(diethylamido)tantalum for advanced metallization”, Appl. Phys. Lett. 67, 1128 (1995).
17. R. Fix, R. G. Gordon, and D. M. Hoffman, “Chemical-vapor deposition of vanadium, niobium, and tantalum nitride thin-films”, Chem. Mater. 5, 614-619 (1993).
18. R. G. Gordon, X. Liu, R. N. R. Broomhall-Dillard, and Y. Shi, “Highly conformal diffusion barriers of amorphous niobium nitride”, Mat. Res. Soc. Symp. Proc. 564, 335-340 (1999).
19. C. W. Wu, W. C. Gau, J. C. Hu, T. C. Chang, C. H Chen, C. J. Chu, and L. J. Chen, “Diffusion barrier properties of metallorganic chemical vapor deposited NbNxOyCz films for Cu metallization”, Surface Coating and Technology (in press, 2002)
20. Y. J. Mei, T. C. Chang, J. C. Hu, L. J. Chen, Y. L. Yang, F. M. Pan, W. F. Wu, A. Ting, and C. Y. Chang, “Characterization of TiN film grown by low-pressure chemical-vapor-deposition”, Thin Solid Films, 308, 594-598 (1997).
21. M. Azuma, Y. Nakato, and H. Tsubomura, “Oxygen and chlorine evolution on niobium-nitride, zirconium-nitride and other metal-nitride amorphous thin-film electrodes prepared by the reactive RF sputtering technique”, J. Electroanal. Chem. 255, 179-198 (1988).
22. M. A. Farooq, S. P. Murarka, C. C. Chang, and F. A. Baiocchi, “Tantalum nitride as a diffusion barrier between Pd2Si or CoSi2 and aluminum”, J. Appl. Phys. 65, 3017 (1989)
23. M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu, C. E. Tsai, S. H. Chuang, and S. C. Wu, “Metal-organic chemical vapor deposition of tantalum nitride barrier layers for ULSI applications”, Thin Solid Films 270, 531-536 (1995)
24. S. H. Kim, D. S. Chung, K. C. Park, K. B. Kim, and S. H. Min, “A comparative study of film properties of chemical vapor deposited TiN films as diffusion barriers for Cu metallization”, J. Electrochem. Soc. 146, 1455-1460 (1999)
Chapter 4
1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (2000).
2. P. C. Andricacos, C. Uzoh, J. O. Dukovc, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections”, IBM J. Res. Dev. 42, 567-574 (1998).
3. J. C. Hu, T. C. Chang, C. W. Wu, L. J. Chen, C. S. Hsiung, W. Y. Hsieh, W. Lur, and T. R. Yew, “Effects of a new combination of additives in electroplating solution on the properties of Cu films in ULSI applications”, J. Vac. Sci. Technol. A 18, 1207-1210 (2000).
4. J. J. Kelly, and A. C. West, “Leveling of 200 nm features by organic additives”, Electrochem. Solid State Lett. 2, 561-563 (1999)
5. A. C. West, “Theory of filling of high-aspect ratio trenches and vias in presence of additives”, J. Electrochem. Soc. 147, 227-232 (2000).
6. K. M. Takahashi, “Electroplating copper onto resistive barrier films”, J. Electrochem. Soc. 147, 1414-1417 (2000).
7. K. M. Takahashi, and M. E. Gross, “Transport phenomena that control electroplated copper filling of submicron vias and trenches”, J. Electrochem. Soc. 146, 4499-4503 (1999).
8. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features”, J. Electrochem. Soc. 147, 4524-4535 (2000).
9. A. R. Srivatsa, C. L. Ygartua, S. Weinzierl, W. Johnson, and T. Kaack, “Process development based on copper and low-k dielectric metrology”, Solid State Technology 43, 55 (2000).
10. C. T. Chua, G. Sarkar, and X. Hu, “In situ characterization of methylsilsesquioxane curing”, J. Electrochem. Soc. 145, 4007-4011 (1998).
11. M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins”, J. Electrochem. Soc. 145, 2861-2865 (1998).
12. C. Hu, M. Morgen, P. S. Ho, A. Jain, W. N. Gill, J. L. Plawsky, and P. C. Wayner, “Thermal conductivity study of porous low-k dielectric materials”, Appl. Phys. Lett. 77, 145 (2000).
13. Y. Uchida, T. Katoh, S. Sugahara, and M. Matsumura, “Chemical vapor deposition based preparation on porous silica films”, Jpn. J. Appl. Phys. Lett. 39, 1155 (2000).
14. T. C. Chang, P. T. Liu, F. Y. Shih, and S. M. Sze, “Effects of hydrogen on electrical and chemical properties of low-k hydrogen silsesquioxane as an intermetal dielectric for nonetchback processes”, Electrochem. Solid State Lett. 2, 390-392 (1999).
15. P. T. Liu, T. C. Chang, M. C. Haung, Y. L. Yang, Y. S. Mor, M. S. Tsai, H. Chung, J. Hou, and S. M. Sze, “Improvement of post-chemical mechanical planarization characteristics on organic low-k methylsilsesquioxane as intermetal dielectric”, J. Electrochem. Soc. 147, 4313-4317 (2000).
16. P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng YF, and S. M. Sze, “Effects of NH3-plasma nitridation on the electrical characterizations of low-k hydrogen silsesquioxane with copper interconnects”, IEEE Trans. Electron Dev. 47, 1733-1739 (2000).
17. J. H. Kim, S. B. Jung, H. H. Park, and S. H. Hyun, “The effects of pre-aging and concentration of surface modifying agent on the microstructure and dielectric properties of SiO2 xerogel film”, Thin Solid Films 377-378, 467-472 (2000).
18. Y. Zeng, S. W. Russell, A. J. McKerrow, L. Chen, and T. L. Alford, “Effectiveness of Ti, TiN, Ta, TaN, and W2N as barriers for the integration of low-k dielectric hydrogen silsesquioxane”, J. Vac. Technol. B 18, 221-230 (2000).
19. V. Chechik, R. M. Crooks, and C. J. M. Stirling, “Reactions and reactivity in self-assembled monolayers”, Adv. Mater. 12, 1161-1171 (2000).
20. D. D. Archibald, and S. Mann, “Template mineralization of self-assembled anisotropic lipid microstructures”, Nature 364, 430-433 (1993).
21. J. H. Schon, and Z. Bao, “Organic insulator/semiconductor heterostructure monolayer transistors”, Appl. Phys. Lett. 80, 332 (2002).
22. M. R. Ghadiri, J. R. Granja, and L. K. Buehler, “Artificial transmembrane ion channels from self-assembling peptide nanotubes”, Nature 369, 301-304 (1994).
23. N. Hubin, and L. Noethe, “Active optics, adaptive optics, and laser guide stars”, Science 262, 1390-1394 (1993).
24. A. Krishnamoorthy, K. Chanda, S. P. Murarka, and G. Ramanath, “Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization”, Appl. Phys. Lett. 78, 2467 (2001).
25. P. Schwartz, F. Schreiber, P. Eisenberger, and G. Scoles, “Growth kinetics of decanethiol monolayers self-assembled on Au(111) by molecular beam deposition: An atomic beam diffraction study”, Surf. Sci. 423, 208-224 (1999).
26. T. Fujimoto, S. Terauchi, H. Umehara, I. Kojima, and W. Henderson, “Sonochemical preparation of single-dispersion metal nanoparticles from metal salts”, Chem. Mater. 13, 1057-1060 (2001).
27. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed., p. 63, published by Physical Electronic Industries, Minnesota, USA (1972).
28. J. C. Hu, T. C. Chang, L. J. Chen, Y. L. Yang, and C. Y. Chang, “Characterization of multilayered Ti/TiN films grown by chemical vapor deposition”, Thin Solid Films 332, 423-427 (1998).
29. J. C. Hu, T. C. Chang, L. J. Chen, Y. L. Yang, S. Y. Chen, and C. Y. Chang, “Investigation on multilayered chemical vapor deposited Ti/TiN films as the diffusion barriers in Cu and Al metallization”, J. Vac. Sci. Technol. A 17, 2389-2393 (1999).
30. R. T. Sanderson, Chemical Bonds and Bond Energy, Academic, New York (1976).
31. B. H. Mahan, University Chemistry, 3nd ed., p.162, Addison-Wesley, Menlo Park, California (1975).
32. T. W. Graham Solomons, Fundamentals of Organic Chemistry, 2nd ed., p. 79, John Wiley & Sons, New York (1986).
33. B. H. Mahan, University Chemistry, 3nd ed., p.166, Addison-Wesley, Menlo Park, California (1975).